Measurement of Long-Scale-Length Plasma Density Profiles for Two-Plasmon Decay Studies

D. Haberberger University of Rochester Laboratory for Laser Energetics 43rd Annual Anomalous Absorption Conference Stevenson, WA 7–12 July 2013

Summary

The dependence of two-plasmon decay (TPD) on the plasma scale length is isolated by using targets of varying radii

- Angular filter refractometry (AFR) was developed to measure high-density, long-scale-length plasmas
- AFR measures the refractive contour map of the probe beam from which the density is calculated up to ~ 10^{21} cm⁻³ ($n_e = 0.1 n_{cr}$)
- The scale length is measured to increase from 150 to 300 $\mu{\rm m}$ as the target diameter is increased from 0.4 to 8 mm
- The hot-electron production is found to increase rapidly with the measured plasma density scale length

D. H. Edgell, S. X. Hu, S. Ivancic, B. Yaakobi, R. Boni, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

The dependence of TPD on the plasma scale length is isolated by using targets of varying radii on OMEGA EP

- The TPD gain is proportional to *IL_n/T_e* (at *n_{cr}/4*)
 - *I*: laser intensity
 - *L*_n: plasma density scale length
 - *T*_e: thermal electron temperature
- Simulations show that *I*/*T*_e is approximately constant for these experiments
- By decreasing the radius of a spherical target, L_n decreases as the plasma expansion becomes more divergent

The experiment measures the plasma density scale length and the hot-electron production

Angular filter refractometry (AFR) maps the refraction of the probe beam at target chamber center (TCC) to contours in the image plane

Angular filter refractometry (AFR) maps the refraction of the probe beam at target chamber center (TCC) to contours in the image plane

The diagnostic is calibrated using a negative lens, which has a well-defined $\theta(x, y)$

x direction (mm)

UR 🔌

The association of these angles with the specific angular spectral filter bands can be applied to a plasma to measure its refraction profile.

The experimental AFR images are analyzed using the calibration angles

creates a contour map of the refraction angle.

The plasma density profile can be deduced from the refractive contour map

The 2-D density map has an error of ±15%.

The AFR images show refractive contours moving away from the target surface as the target diameter increases

Analysis of the AFR images shows the plasma expansion is confined as the target diameter is increased

Laser: 2 ns square pulse, probe timing: 1.5 ns

LLE

Two-dimensional flux-limited (f = 0.06) hydrodynamic simulations show that the density scale length at $n_{cr}/4$ saturates after about 1 ns

UR

At 1.5 ns, the I/T_e varies little over the range of targets tested.

Comparisons of the experimental data to DRACO hydrodynamic simulations show significant differences

LLE

Hydrodynamic simulations overestimate the density and scale length compared to measurements at $n_{cr}/10$ at 1.5 ns.

The hot-electron fraction is measured to increase rapidly with the plasma density scale length

The fraction of hot electrons increases from ~0.005% to 1% while increasing L_n from 150 to 300 μ m.

Summary/Conclusions

The dependence of two-plasmon decay (TPD) on the plasma scale length is isolated by using targets of varying radii

- Angular filter refractometry (AFR) was developed to measure high-density, long-scale-length plasmas
- AFR measures the refractive contour map of the probe beam from which the density is calculated up to ~ 10^{21} cm⁻³ ($n_e = 0.1 n_{cr}$)
- The scale length is measured to increase from 150 to 300 $\mu{\rm m}$ as the target diameter is increased from 0.4 to 8 mm
- The hot-electron production is found to increase rapidly with the measured plasma density scale length

The 4ω probe laser system delivers a 3.3-mm spot to target chamber center (TCC) with picosecond timing accuracy

