Simulations of Cone-in-Shell Targets for Integrated Fast-Ignition Experiments on OMEGA

Mass density (in g/cm³) at the time of cone-tip breakout in the simulation of an Al-tip cone-in-shell target

A. A. Solodov *et al.* University of Rochester Laboratory for Laser Energetics

FSC

42nd Annual Anomalous Absorption Conference Key West, FL 25–29 June 2012

LLE

Summary

DRACO*–LSP** simulations suggest a good performance of new Al-tipped cone-in-shell targets

- A new AI-tip target promises a better shock resilience (~100 ps later cone-tip breakout) than the previous Au-tip target
- Fast-electron transport is improved by reducing the scattering losses and implementing resistive collimation
- Coupling efficiency of 4% to 12% of the petawatt laser pulse energy to the core is inferred from the simulations
- A neutron yield increase of 10^{7–108} caused by fast electrons is predicted

^{*}R. B. Radha et al., Phys. Plasmas <u>12</u>, 056307 (2005). **D. R. Welch et al., Phys. Plasmas <u>13</u>, 063105 (2006).

K. S. Anderson, W. Theobald, A. Shvydky, R. Betti, J. F. Myatt, and C. Stoeckl

> University of Rochester Laboratory for Laser Energetics and Fusion Science Center for Extreme States of Matter

> > R. B. Stephens

General Atomics

Integrated fast-ignition experiments with re-entrant cone targets are performed at the Omega Laser Facility

Shell material	CD
Shell diameter	~870 <i>µ</i> m
Shell thickness	~40 <i>µ</i> m

Compression pulse

Energy	~18 kJ (54 beams)
Pulse shape	Low-adiabat, $lpha \simeq$ 1.5
Pulse duration	~3 ns

- Improved OMEGA EP laser performance is expected
 - energy $E_{\rm EP}$ = 1.5 to 2 kJ
 - focal spot $R_{80} = 15 \ \mu m$
 - prepulse energy $E_{pre} < 1 \text{ mJ}$

Au cone-tip design

UR

FSC

Implosion of cone-in-shell targets is simulated using DRACO* radiation-hydrodynamic code

- Simulates the implosion in 2-D cylindrically symmetric geometry
- Improvements over the last year
 - radiation transport is modeled
 - 3-D laser ray trace is included
 - the Eulerian hydrodynamic scheme is improved by using proper Coriolis force terms
 - laser cross-beam energy transfer** and nonlocal thermal transport*** are accounted for by reducing the absorption fraction as predicted by *LILAC***** simulations

^{*}R. B. Radha et al., Phys. Plasmas <u>12</u>, 056307 (2005).

^{**} I.V. Igumenshchev et al., Phys. Plasmas <u>19</u>, 056314 (2012).

^{***} V. N. Goncharov et al., Phys. Plasmas <u>15</u>, 056310 (2008).

^{****} J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).

Simulations of Au cone-tip targets have been performed*

Mass density (g/cm³)

^{*}Exact target specifications and OMEGA pulse shape for the UCSD/LLNL/LLE shot 63006 (July 2011) are used

Cone tip breaks ~120 ps before the bang time, ~300 ps before the peak compression time

Cone-tip breakout probably limites the maximum neutron yield in previous integrated OMEGA experiments*

Cone-tip breakout can be delayed by using targets with a thick lower-Z cone tip FSE

UR

- A very thin (~2- μ m) gold layer inside the cone tip
 - serves as a mounting layer for the AI block
 - helps to shield the radiation

The cone tip survives almost until the bang time in the simulation for a 60- μ m-thick aluminum tip

Aluminum plasma from the cone tip can help to collimate fast electrons.

TC10053

DRACO simulations are confirmed by the recent shock breakout measurements FSC

LLE

Performance of cone-in-shell targets has been studied using DRACO–LSP integrated simulations

- LSP*
 - 2-D/3-D implicit hybrid PIC code that calculates the target heating by fast electrons
 - coupled to the hydrodynamic code DRACO during the short-pulse interaction**

^{*}D. R. Welch et al., Phys. Plasmas <u>13</u>, 063105 (2006).

^{**}A. A. Solodov et al., Phys. Plasmas 15, 112702 (2008).

LSP simulates fast-electron transport and core heating

Simulation for electron temperature T = 0.6 MeV ($I_{\text{laser}} \sim 10^{19}$ W/cm²), divergence half-angle $\theta_{1/2} = 50^{\circ}$, and conversion efficiency $\eta_{\text{L}} = 0.2$

LSP predicts that 20 to 33% of fast-electron energy is coupled to the core (4 to 12% of the laser energy) FSE

 Assumes 20 to 40% conversion efficiency to fast electrons generated at the cone tip

Neutron-yield increase by 10⁷–10⁸ is predicted by *DRACO/LSP* simulations

z (μm)

Summary/Conclusions

DRACO*–LSP** simulations suggest a good performance of new Al-tipped cone-in-shell targets

- A new AI-tip target promises a better shock resilience (~100 ps later cone-tip breakout) than the previous Au-tip target
- Fast-electron transport is improved by reducing the scattering losses and implementing resistive collimation
- Coupling efficiency of 4% to 12% of the petawatt laser pulse energy to the core is inferred from the simulations
- A neutron yield increase of 10^{7–108} caused by fast electrons is predicted

^{*}R. B. Radha et al., Phys. Plasmas <u>12</u>, 056307 (2005). **D. R. Welch et al., Phys. Plasmas <u>13</u>, 063105 (2006).