#### Half-Integer Harmonic Images and Spectra Point Toward Localized, Multibeam Two-Plasmon Decay



W. Seka University of Rochester Laboratory for Laser Energetics 42nd Annual Anomalous Absorption Conference Key West, FL 25–29 June 2012

#### Images and spectra of the $3\omega/2$ and $\omega/2$ emission from implosion experiments indicate localized multibeam two-plasmon-decay (TPD) instability

•  $3\omega/2$  and  $\omega/2$  images are consistent with driving common waves in HEX and PENT ports on OMEGA

UR 🔌

- Comparison of on-target laser-light nonuniformity and  $3\omega/2$  and  $\omega/2$  images allows for inferences on TPD driven in localized areas
- Two distinct TPD instability regions have been identified
- $\omega/2$  spectra point toward multibeam common-wave processes



D. H. Edgell, D. H. Froula, J. Katz, J. F. Myatt, J. Zhang, R. W. Short, D. T. Michel, A. V. Maximov, and V. N. Goncharov

> University of Rochester Laboratory for Laser Energetics

### OMEGA implosions are usually carried out with tangential illumination



For 60 beams with a 1-ns square pulse and 450 J/beam,  $I \sim 11.6 \times 10^{14}$  W/cm<sup>2</sup>±0.3%

#### Later in the pulse, the irradiation uniformity relevant for TPD near quarter critical is considerably worse



- bisectors of beam pairs
- centers of HEX or PENT ports

#### Later in the pulse, the irradiation uniformity relevant for TPD near quarter critical is considerably worse



- bisectors of beam pairs
- centers of HEX or PENT ports

#### There are two distinct multibeam TPD instability regions



# Nonlinear 3-D Zhakarov simulations show both interaction regions including propagation and amplification of plasmons



#### Nonlinear 3-D Zakharov simulations saturate after a few picoseconds and diverge significantly from nonlinear gain estimates



## After 10 ps, very strong density perturbations near $n_{\rm C}/4$ strongly influence the TPD instability



### HEX and PENT locations on OMEGA are naturally favored for multibeam TPD interaction



• Only six beams surrounding HEX port can contribute to multibeam TPD with shared plasmon going radially inward

#### Changing target illumination can significantly change the location and drive intensity of multibeam TPD



• 60-beam drive (illumination) nonuniformity degraded to 10% (from 0.3%)

### The structure observed in $3\omega/2$ images is consistent with TPD operating in localized regions



## $\omega/2$ images are dominated by refraction and can be understood using ray tracing



LL

#### Different illumination conditions lead to understandable changes in $\omega/2$ images



### Different illumination conditions lead to understandable changes in $\omega/2$ images



### $\omega/2$ spectra viewed in HEX ports clearly indicate small $k_{\perp}$ instability



### $\omega/2$ spectra viewed in HEX ports clearly indicate small $k_{\perp}$ instability



Six-beam overlap:  $3.8 \times 10^{14}$ Target: Be shell 60-beam implosion

## In 1985\* $\omega/2$ spectra were found to contain a valuable $T_{\rm e}$ measurement feature that has not been seen again until very recently



 No through-focusing lens measurements or time-resolved measurements existed at that time

## The new interpretation involves multibeam TPD and is consistent with previous observations



#### Summary/Conclusions

Images and spectra of the  $3\omega/2$  and  $\omega/2$  emission from implosion experiments indicate localized multibeam two-plasmon-decay (TPD) instability

•  $3\omega/2$  and  $\omega/2$  images are consistent with driving common waves in HEX and PENT ports on OMEGA

UR 🔌

- Comparison of on-target laser-light nonuniformity and  $3\omega/2$  and  $\omega/2$  images allows for inferences on TPD driven in localized areas
- Two distinct TPD instability regions have been identified
- $\omega/2$  spectra point toward multibeam common-wave processes

### For $k_{\perp}/k_0 < 0.2$ the 702-nm wavelength shift varies little



## Linear 3-D Zhakarov simulations show both interaction regions including propagation and amplification



- Multibeam simulations indicate common-mode instability over a wide range of k<sub>||</sub> extending to the Landau cutoff
- Absolute instability including propagation and amplification of small plasmons