Experimental Validation of the Two-Plasmon-Decay (TPD) Common-Wave Process

D. T. Michel Plasma and Ultrafast Physics Group University of Rochester Laboratory for Laser Energetics 42nd Annual Anomalous Absorption Conference Key West, FL 25–29 June 2012

A common-wave, two-plasmon-decay (TPD) theory is consistent with the TPD growth observed in OMEGA and OMEGA EP experiments

- OMEGA EP experiments shows that for two beams the TPD is proportional to the overlapped intensity, but not for four beams*
- Linear theory shows that a resonant common wave can be driven by multiple beams in the region bisecting the beams. In this region, the gain is proportional to the overlapped intensity times a geometric factor*
- Reducing the number of symmetric beams that overlap at $n_c/4$ will reduce the common-wave gain

A. V. Maximov, R. W. Short, J. F. Myatt, W. Seka, J. A. Delettrez, R. Follett, S. X. Hu, A. A. Solodov, C. Stoeckl, and D. H. Froula

Laboratory for Laser Energetics Rochester NY

OMEGA EP provides a planar-target platform to study twoplasmon decay near ignition coronal-plasma conditions

This target platform accounts for all electrons generated by TPD; the energy coupled to the direct-drive shell will be reduced.

^{*}D. H. Froula et al., Phys. Rev. Lett. <u>108</u> 165003 (2012).

Experiments on OMEGA EP show that the fraction of hot electrons does not always depend on the overlapped intensity*

A significant reduction of the hot-electron energy is observed when four beams are used with the same overlapped intensity.

> *D. T. Michel *et al.*, "Experimental Validation of the Two-Plasmon-Decay Common-Wave Process," submitted to Physical Review Letters.

These results are explained by a common-wave process, where multiple beams share a common plasma wave^{*, **}

• The dispersion relation of each daughter $(\omega_c - \omega_0, k_c - k_{0,i})$ beam must be satisfied:

$$(\omega_{c} - \omega_{0})^{2} = \omega_{pe}^{2} + 3 \underbrace{(\overline{k_{c}} - \overline{k_{0,i}})^{2}}_{th,e}$$

Term which must be conserved

• Therefore, the commonwave volume is defined by:

 $\left| \overrightarrow{k_{c}} - \overrightarrow{k_{0,i}} \right| = \text{constant}$

The resonant common-wave process occurs in the region bisecting the beams.

^{*} R. W. Short and J. F. Myatt, Bull. Am. Phys. Soc. <u>56</u>, 329 (2011).

^{**} D. T. Michel et al., "Experimental Validation of the Two-Plasmon-Decay Common-Wave Process," submitted to Physical Review Letters.

The resonant common-wave region for two beams forms a plane and for more beams becomes a line*

Multiple-beam common-wave region

Symmetry is necessary for more than three beams

The resonant common-wave gain is calculated in the common-wave region.

*D. T. Michel *et al.*, "Experimental Validation of the Two-Plasmon-Decay Common-Wave Process," submitted to Physical Review Letters.

The resonant common-wave gain is consistent with the 1-, 2-, and 4-beam OMEGA EP results*

The geometric factor explains the observed differences in the two-beam and four-beam results.

*D. T. Michel et al., "Experimental Validation of the Two-Plasmon-Decay Common-Wave Process," submitted to Physical Review Letters.

This common-wave model is consistent with 2003 results, where TPD scaled with overlapped intensity*

The TPD was shown to scale with overlapped intensity when using 2, 3, 4, 5, and 6 beams with polarization smoothing (PS).

^{*}C.Stoeckl et al., Phys. Rev. Lett. <u>90</u>, 235002 (2003).

When using PS, the gain is proportional to half of the overlapped intensity

For beams with PS, the maximum gain defines two bowls:

the overlapped intensity

From symmetry, the gain on the line is given by:

$$\mathbf{G_c} = \mathbf{G_1} + \mathbf{G_2} + \ldots = \mathbf{n_{beam}} \mathbf{G_1} \alpha \ \mathbf{0.5} \times \mathbf{I}_{\Sigma, q}$$

The geometric factor when using PS is reduced to 0.5 (1, 2, n... beams).

When PS is used, the geometric factor is reduced to $f_q = 0.5 (1, 2, n... beams)$

The symmetry between the beams allows for the same common-wave region for the 3, 4, 5, and 6 beam conditions

UR 🔌

$$\mathbf{G_c} = \mathbf{8.5} \times \mathbf{10^{-2}} \, \frac{\mathbf{I}_{\Sigma,q} \, \mathbf{L}_n}{\mathbf{T_e}}$$

When using beams with PS, the TPD threshold is proportional to the overlapped intensity, consistent with 2003 experiments.

For 18 beams, a further decrease of the TPD growth with the overlapped intensity is observed

The TPD threshold is increased by a factor of ~3.

The effective intensity driving the common plasma wave is given only by cone 1

• Each common wave requires:

 $\left| \vec{k}_{c} - \vec{k}_{0,i} \right| = \text{constant}$

• This is not satisfied between different cones on OMEGA:

Cone 1: Cone 2: Cone 3: $k_{\rm c}-k_{\rm 0}$ $k_{\rm c}-k_{\rm 0,i}$ $k_{\rm c} - k_{0,\rm i}$ KΛ **k**0,i The reduction in intensity (I_q^{sym}) explains the observed factor of three difference in the thresholds.

The hot-electron fraction is further reduced in spherical geometry for a given overlapped intensity

The reduction of L_n/T_e (50 μ m/keV) explains the reduction of TPD for spherical targets.

The multiple-beam convective gain accounts for the differences in hydrodynamics, laser-beam geometry, and PS

Common wave gain (G_c)

For each configuration, the TPD growth scales with the common wave gain G_c .

This theory points to mitigation strategies

$$\mathbf{G}_{\max} = \mathbf{f}_{g} \left(\frac{\mathbf{I}_{\Sigma,q}^{\text{sym}} \mathbf{L}_{n}}{\mathbf{47} \times \mathbf{T}_{e}} \right)$$

- (a) Breaking the beam symmetry will reduce the number of beams that can contribute to the common-wave gain $(I_{\Sigma,q}^{sym})$
- (b) Polarization management could reduce the geometric factor
- (c) Changing the ablator material could
 - reduce the scale length and increase the electron temperature (L_n/T_e)
 - modify the TPD saturation level*
- (d) Increasing the number of beams reduces the single-beam intensity

Summary/Conclusions

A common-wave, two-plasmon-decay (TPD) theory is consistent with the TPD growth observed in OMEGA and OMEGA EP experiments

- OMEGA EP experiments shows that for two beams the TPD is proportional to the overlapped intensity, but not for four beams*
- Linear theory shows that a resonant common wave can be driven by multiple beams in the region bisecting the beams. In this region, the gain is proportional to the overlapped intensity times a geometric factor*
- Reducing the number of symmetric beams that overlap at $n_c/4$ will reduce the common-wave gain

^{*}D. T. Michel *et al.*, "Experimental Validation of the Two-Plasmon-Decay Common-Wave Process," submitted to Physical Review Letters.