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Mitigating the two-plasmon-decay (TPD) instability 
in long-scale-length plasmas has been investigated  
with different ablators on OMEGA EP

TC10026

• OMEGA EP is used to study laser–plasma-interaction (LPI) 
processes in NIF-scale plasmas

• NIF-scale-length plasmas (Ln ~ 300 to 400 nm) of CH, saran, 
and aluminum have been created with various beam energies 
available on OMEGA EP

• Fast-electron generation from TPD instability are reduced  
by a factor of 3 to 10 for saran and aluminum plasmas,  
compared to the CH case at the same intensity

• Two-dimensional DRACO simulations suggest that saran 
may be a better ablator for the direct-drive–ignition design  
since it balances TPD mitigation and hydro-drive efficiency

Summary
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Direct-drive NIF designs require accurate assessments 
of LPI processes in long-scale-length plasmas
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Hot electrons from TPD have been measured in  
long-scale-length (Ln ~ 400 nm) plasma experiments 
with plastic-CH targets*
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**D. H. Froula, B. Yaakobi, S. X. Hu, P.-Y. Chang, R. S. Craxton, D. H. Edgell, R. Follett, D. T. Michel, 
**J. F. Myatt, W. Seka, R. W. Short, A. Solodov, and C. Stoeckl, Phys. Rev. Lett. 108, 165003 (2012).
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Mitigating the TPD instability is important for reducing 
the possibility of compression reduction by hot electrons

TC10028 **A. Simon et al., Phys. Fluids 26, 3107 (1983).

• The TPD-threshold parameter* is defined as, 
 

• Long-scale-length plasmas (Ln > 400 nm) are inevitable 
in direct-drive–ignition implosions on the NIF

• The TPD threshold parameter could be decreased  
by reducing Iq, increasing Te, and decreasing Ln

• Ablator materials with GZH larger than the typical plastic-CH 
(GZH ~ 3 to 3.5) may have advantages of suppressing 
TPD-instability as a result of

– more absorption so that less intensity reaches  
quarter-critical regime

– hot-electron temperature at the quarter-critical regime

– scale-length can be reduced
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Experiments on OMEGA EP use large (1-mm) DPP’s 
to create long-scale-length plasmas with Mo-CH-ablator 
“sandwich” targets
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DRACO simulations show lower laser intensities at nc/4 
for Saran and Al in contrast to CH
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DRACO simulations show different density-scale-length 
Ln at nc/4 for Saran and Al in comparison with CH
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The temperature at nc/4 is higher for Saran and Al 
when compared to the CH case
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Finally, the TPD-threshold parameters (h) are smaller 
for saran and Al when compared to the CH case
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Experimental results have shown a factor of 3 to 10 reduction 
in TPD-induced hot-electron signals for saran (GZH = 8) and 
aluminum (Z = 13) compared to the CH-ablator case
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The hydro-drive efficiency must be considered when 
fighting/mitigating TPD instability in long-scale-length 
plasmas
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• Although mid-/high-Z ablators can suppress the hot-electron 
generation from TPD instability, they may not be efficient for hydro 
drive because thermal conduction in plasmas is scaled with 1/Z

• Radiation loss and radiative preheat are among the concerns 
when high-GZH ablators are considered for direct-drive–ignition 
designs

• A balance between TPD-instability mitigation and maintaining  
an acceptable hydro-efficiency must be made



Optimal mid-Z (= 3 to 8) ablators can not only mitigate 
TPD instability, but also give acceptable hydro-efficiency
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Early time of drive: saran ablator gives only ~10% lower drive pressure.

–50 0 50

Time = 0.7 ns

100

E
le

ct
ro

n
 d

en
si

ty
 (

1/
cm

3 )

Position x (nm)

2

4

6

8

10

0

P
re

ss
u

re
 (

M
b

ar
)

1021

1022

1023

1024

1020
–50 0 50

Time = 0.7 ns

100L
as

er
 d

ep
o

si
ti

o
n

 (
×

10
24

)(
er

g
/c

m
3 )

Position x (nm)

1000

1500

3000

2000

2500

3500

4000

500

E
le

ct
ro

n
 t

em
p

er
at

u
re

 (
eV

)

10

20

30

40 Saran
CH

Saran
CH



DRACO simulations show that saran may be a better 
ablator for both mitigating TPD instability and maintaining 
acceptable hydro-efficiency

TC10037

The small shock-front position difference (~2 nm) indicates 
the acceptable drive efficiency of a saran ablator.
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SummarySummary/Conclusions

Mitigating the two-plasmon-decay (TPD) instability 
in long-scale-length plasmas has been investigated  
with different ablators on OMEGA EP

• OMEGA EP is used to study laser–plasma-interaction (LPI) 
processes in NIF-scale plasmas

• NIF-scale-length plasmas (Ln ~ 300 to 400 nm) of CH, saran, 
and aluminum have been created with various beam energies 
available on OMEGA EP

• Fast-electron generation from TPD instability are reduced  
by a factor of 3 to 10 for saran and aluminum plasmas,  
compared to the CH case at the same intensity

• Two-dimensional DRACO simulations suggest that saran 
may be a better ablator for the direct-drive–ignition design  
since it balances TPD mitigation and hydro-drive efficiency


