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Reducing the radius of the laser spots 
mitigates cross-beam energy transfer (CBET)

E21311

•	 All measurements are consistent with the reduction of CBET 
when the laser spot size is reduced

•	 A 20% reduction in spot size leads to a

–	 17% increase in implosion velocity

•	 A two-state zooming of spot diameter is proposed to smooth 
the laser imprint and reduce cross-beam energy transfer

Cross-beam energy transfer modeling is required to match the experimental 
observables (scattered light, implosion velocity, and bang time).
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Low-adiabat, direct-drive–implosion experiments 
are well diagnosed on the OMEGA Laser System

E20335b
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Light scattered from the target uniformly 
illuminates the chamber wall
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The scattered power is recorded at many locations around the OMEGA 
target chamber to measure the total absorption (5% accuracy).

*D. Edgell, “Mitigation of Cross-Beam Energy 
Transfer in Polar-Drive Implosions,” this conference.
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X-ray self-emission is used to measure the shell 
trajectory and nonuniformities

E21313

•	 A steep gradient in emission is created by the rapid increase in density 
at the ablation surface (optically thick shell)

The shell radii on OMEGA are measured with an accuracy 
of 1 nm and velocity is measured to within 2%.

Coronal plasma emission
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*	D. T. Michel et al., “Shell Trajectory Measurements from Direct-Drive   
Experiments,” to be published in Review of Scientific Instruments.



This technique is adapted to a streak camera 
to provide absolute timing

E21314

These diagnostics are used to measure the shell 
trajectory and infer the hydrodynamic efficiency.
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Cross-beam energy transfer (CBET) 
reduces the energy coupled to the fusion capsule

E19971a

P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009).
J. F. Myatt et al., Phys. Plasmas 11, 3394 (2004).
W. Seka et al., Phys. Plasmas 15, 056312 (2008).

CBET reduces the most hydrodynamically  
efficient portion on the incident laser beams.
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Cross-beam energy transfer modeling is required to 
match the experimental observables (scattered light, 
implosion velocity, and bang time) 
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*I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012).



The scattered-light spectrum provides a measure  
of the underdense plasma conditions

E19907a

The scattered-light spectrum demonstrates the need 
to include CBET and nonlocal modeling.
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Removing the energy bypassing the target will reduce 
cross-beam energy transfer at the cost of increased 
illumination nonuniformities

E21316
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*I. V. Igumenshchev et al., Phys. Plasmas 19, 056314 (2012).



Experiments on OMEGA employed various diameter 
laser beams to reduce cross-beam energy transfer

E20145c
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The shell trajectory measurements* distinguish 
between the different models in the hydrocodes

E20337b

A 20% reduction in beam radius results in a 15% increase 
in absorption and a 17% increase in implosion velocity.

*D. T. Michel et al., “Shell Trajectory Measurements from Direct-Drive   
Experiments,” to be published in Review of Scientific Instruments.
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This increased hydro-efficiency is a result of increased 
coupling of the near-radial rays that penetrate to the 
critical surface and reduced CBET

E20481c
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Reducing the overlapped illumination uniformity 
results in nonuniformities on the imploding shell
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A two-state zooming is proposed to smooth laser 
imprint and reduce CBET during the main drive

E21317a
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A two-state zooming is proposed to smooth laser 
imprint and reduce CBET during the main drive
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A two-state zooming is proposed to smooth laser 
imprint and reduce CBET during the main drive
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A two-state zooming is proposed to smooth laser 
imprint and reduce CBET during the main drive

E21317

Zooming and dynamic bandwidth reduction will increase the effective 
energy on target by 30% in OMEGA implosion experiments.
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Summary/Conclusions

Reducing the radius of the laser spots 
mitigates cross-beam energy transfer (CBET)

•	 All measurements are consistent with the reduction of CBET 
when the laser spot size is reduced

•	 A 20% reduction in spot size leads to a

–	 17% increase in implosion velocity

•	 A two-state zooming of spot diameter is proposed to smooth 
the laser imprint and reduce cross-beam energy transfer

Cross-beam energy transfer modeling is required to match the experimental 
observables (scattered light, implosion velocity, and bang time).


