Mitigation of Cross-Beam Energy Transfer in Direct-Drive Implosions

D. H. Froula University of Rochester Laboratory for Laser Energetics 42nd Annual Anomalous Absorption Conference Key West, FL 25–29 June 2012

Reducing the radius of the laser spots mitigates cross-beam energy transfer (CBET)

- All measurements are consistent with the reduction of CBET when the laser spot size is reduced
- A 20% reduction in spot size leads to a
 - 17% increase in implosion velocity
- A two-state zooming of spot diameter is proposed to smooth the laser imprint and reduce cross-beam energy transfer

Cross-beam energy transfer modeling is required to match the experimental observables (scattered light, implosion velocity, and bang time).

I. V. Igumenshchev, D. T. Michel, D. H. Edgell, R. Follett, J. H. Kelly, T. J. Kessler, W. Seka, D. D. Meyerhofer, V. N. Goncharov, and J. F. Myatt

Laboratory for Laser Energetics University of Rochester

Low-adiabat, direct-drive-implosion experiments are well diagnosed on the OMEGA Laser System

Light scattered from the target uniformly illuminates the chamber wall

The scattered power is recorded at many locations around the OMEGA target chamber to measure the total absorption (5% accuracy).

*D. Edgell, "Mitigation of Cross-Beam Energy Transfer in Polar-Drive Implosions," this conference.

X-ray self-emission is used to measure the shell trajectory and nonuniformities

The shell radii on OMEGA are measured with an accuracy of 1 μ m and velocity is measured to within 2%.

* D. T. Michel et al., "Shell Trajectory Measurements from Direct-Drive Experiments," to be published in Review of Scientific Instruments.

This technique is adapted to a streak camera to provide absolute timing

trajectory and infer the hydrodynamic efficiency.

Cross-beam energy transfer (CBET) reduces the energy coupled to the fusion capsule

^{P. Michel} *et al.*, Phys. Rev. Lett. <u>102</u>, 025004 (2009).
J. F. Myatt *et al.*, Phys. Plasmas 11, 3394 (2004).
W. Seka *et al.*, Phys. Plasmas <u>15</u>, 056312 (2008).

UR 🔌

Cross-beam energy transfer modeling is required to match the experimental observables (scattered light, implosion velocity, and bang time)

*I. V. Igumenshchev et al., Phys. Plasmas <u>19</u>, 056314 (2012).

The scattered-light spectrum provides a measure of the underdense plasma conditions

LL

The scattered-light spectrum demonstrates the need to include CBET and nonlocal modeling.

Removing the energy bypassing the target will reduce cross-beam energy transfer at the cost of increased illumination nonuniformities

^{*}I. V. Igumenshchev et al., Phys. Plasmas <u>19</u>, 056314 (2012).

Experiments on OMEGA employed various diameter laser beams to reduce cross-beam energy transfer

^{*} D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012).

The shell trajectory measurements* distinguish between the different models in the hydrocodes

A 20% reduction in beam radius results in a 15% increase in absorption and a 17% increase in implosion velocity.

*D. T. Michel *et al.*, "Shell Trajectory Measurements from Direct-Drive Experiments," to be published in Review of Scientific Instruments.

This increased hydro-efficiency is a result of increased coupling of the near-radial rays that penetrate to the critical surface and reduced CBET

UR 🔌

CBET **Reduced CBET** $R_{\text{beam}}/R_{\text{target}} = 1.0$ $R_{\text{beam}}/R_{\text{target}} = 0.5$ **Contributions** 0.4 Wavelength (nm) from deep 0.2 penetrating rays **Experimental** 0.0 $\log_{10}(I)$ spectra 2.2 -0.2 -0.4 63183 -63178 1.4 0.4 Mavelength (nm) 0.0 0.0 -0.2 -0.4 (nm) Modeled 0.6 spectra including -0.2 CBET 2 3 2 3 0 0 Time (ns) Time (ns)

Reducing the overlapped illumination uniformity results in nonuniformities on the imploding shell

Nonuniformities are measured when cross-beam energy transfer is mitigated.

Zooming and dynamic bandwidth reduction will increase the effective energy on target by 30% in OMEGA implosion experiments.

Reducing the radius of the laser spots mitigates cross-beam energy transfer (CBET)

 All measurements are consistent with the reduction of CBET when the laser spot size is reduced

UR ·

- A 20% reduction in spot size leads to a
 - 17% increase in implosion velocity
- A two-state zooming of spot diameter is proposed to smooth the laser imprint and reduce cross-beam energy transfer

Cross-beam energy transfer modeling is required to match the experimental observables (scattered light, implosion velocity, and bang time).