

R. K. FOLLETT, D. T. MICHEL, J. F. MYATT, S. X. HU, B. YAAKOBI, AND D. H. FROULA **University of Rochester, Laboratory for Laser Energetics**

 $k_{3\alpha}$

 $K_{I\Delta W} \sim K_{4(i)}$

E21326

K_{FPW}

Thomson-Scaliering Measurements of Jon-Acoustic Wave Amplitudes Driven by the Two-Plasmon-Decay Instability

Ion-density perturbations are compared to ZAK simulations^{*,†} and a similar growth threshold is observed rms ion-acoustic wave amplitude versus intensity • δ_n/n can be calculated using the ratio of the driven to thermal Experiment scattered power[‡] and compared ZAK simulation Ò to ZAK simulations

simulations and experiments is between 2 and 3×10^{14} W/cm².

E21334

*K. Y. Sanbonmatsu et al., Phys. Rev. Lett. <u>82</u>, 932 (1999). [†]D. A. Russell, presented at the Workshop on Laser Plasma Instabilities, Livermore, CA, 3–5 April 2002. [‡]D. H. Froula et al., Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques. 2nd ed. (Academic Press, Burlington, MA, 2011).

Ion-acoustic waves (IAW) driven by ponderomotive beating of electron-plasma waves from two-plasmon decay (TPD) have been observed

- Previous work shows that beating of electron-plasma waves drives density perturbations through the ponderomotive force*
- Time-resolved Thomson-scattering spectra at quarter critical show that the amplitude of the ion-acoustic waves follow the amplitude of the $3/2\omega$ emission (a TPD signature)
- Ion-acoustic waves grow rapidly to large amplitudes ($\delta_{n_e}/n_e \sim 0.01\%$) once a threshold in electron-plasma wave amplitude is reached
- ZAK simulations show similar behavior**,[†]

ZAK simulations indicate beating of electron-plasma waves.

^{*}R. Yan et al., Phys. Rev. Lett. <u>103</u>, 175002 (2009).

^{**}K.Y. Sanbonmatsu et al., Phys. Rev. Lett. <u>82</u>, 932 (1999).

[†]D. A. Russell, presented at the Workshop on Laser Plasma Instabilities, Livermore, CA, 3–5 April 2002.

The experimental setup involves a Thomson telescope coupled to spectrometers and streak cameras

*J. Katz et al., "A Reflective Optical Transport for Streaked Thomson Scattering and Gated Imaging on OMEGA," E21320 submitted to Review of Scientific Instruments.

The Thomson scattering geometry looks at ion-acoustic wave *k*-vectors near the plane of the target

Several potential TPD saturation mechanisms have been studied both experimentally and theoretically

- Beating of EPW's either at different angles or frequencies, creates spatial variations in the E field, which can drive density perturbations through the ponderomotive force*
- This effect has been simulated at quarter-critical using 2-D particle-in-cell (PIC) codes*
- Previous experiments have seen indications of this effect using 10.6- μ m light and 2 ω TS**

UR 🔌

Ion-acoustic waves are produced by ponderomotive beating of electron-plasma waves.

*R. Yan et al., Phys. Rev. Lett. <u>103</u>, 175002 (2009).

**H. A. Baldis, J. C. Samson, and P. B. Corkum, Phys. Rev. Lett. <u>41</u>, 1719 (1978).

Thomson scattering (TS) at quarter critical allows for assessment of the plasma conditions and verification of the hydro modeling

*D. H. Froula *et al.*, Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques, 2nd ed. (Academic Press, Burlington, MA, 2011).

Time-resolved spectra are used to compare the temporal evolution of ion-acoustic wave and $3/2\omega$ amplitudes

The ion-wave amplitude quickly turns off once two-plasmon decay is no longer driven

UR

The scattered power from ion-acoustic waves is compared to $3/2\omega$ emission

UR

There is a clear correlation between the $3/2\omega$ and ion-acoustic wave amplitudes.

Ion-density perturbations are compared to ZAK simulations*,[†] and a similar growth threshold is observed

The threshold for ion-acoustic wave growth in both ZAK simulations and experiments is between 2 and 3×10^{14} W/cm².

^{*}K. Y. Sanbonmatsu et al., Phys. Rev. Lett. <u>82</u>, 932 (1999).

[†]D. A. Russell, presented at the Workshop on Laser Plasma Instabilities, Livermore, CA, 3–5 April 2002.

[‡]D. H. Froula et al., Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques,

E21334 2nd ed. (Academic Press, Burlington, MA, 2011).