Two-Dimensional Radiation–Hydrodynamic Simulations of Cryogenic-DT Implosions at the Omega Laser Facility

S. X. Hu
University of Rochester
Laboratory for Laser Energetics

40th Annual Anomalous Absorption Conference
Snowmass Village, CO
13–18 June 2010
Dominant nonuniformity sources have been identified for improving neutron yield in cryogenic-DT implosions

- Cryogenic-DT implosions on OMEGA have reached high compressions with $\langle \rho R \rangle \sim 300 \text{ mg/cm}^2$, but the yield-over-clean (YOC) for neutron production is only on the level of $\sim 5\%$.

- Two-dimensional DRACO simulations reproduce well the YOC and ion temperature observed in experiments.

- To increase YOC to the ignition hydro-equivalent level of $\sim 15\%$ to 20%, the target offset must be $\leq 10 \mu\text{m}$ and smoothing by spectral dispersion (SSD) must be employed.

Summary
Collaborators

Laboratory for Laser Energetics
University of Rochester
Hydro-simulations are essential in identifying nonuniformities for increasing YOC to the ignition hydro-equivalent level

- For hot-spot-ignition designs*, there is a minimum requirement on the neutron yield-over-clean (YOC \sim 50\%) on the NIF, in addition to the successful assembly of a high-density shell (\rho R).

- The ignition hydro-equivalent of cryogenic DT implosions on OMEGA require a YOC level of \sim 15\% to 20\%.

- High compression with \langle \rho R \rangle \sim 300 \text{ mg/cm}^2 has been achieved on OMEGA**, while the neutron yield is on the level of YOC \sim 5\%.

- Two-dimensional DRACO simulations identify the major perturbation sources for improving the current YOC to the ignition hydro-equivalent level.

*T. Collins (invited talk, this morning)

Cryogenic-DT implosions have achieved high compression ($\langle \rho R \rangle \gtrsim 300 \text{ mg/cm}^2$) on OMEGA.

Target and laser perturbations result in an YOC level of ~5% for these implosions.

Target and laser perturbations reduce the neutron yield in cryogenic-DT implosions on OMEGA

- **Target perturbations**
 - offset from the target chamber center
 - ice roughness at inner surface

- **Laser nonuniformities**
 - low-mode beam-to-beam nonuniformities (mistiming, mispointing, power imbalance)
 - Single-beam nonuniformity (laser imprinting)
Low-mode laser nonuniformities on OMEGA reduce YOC only by 7% ~ 15%

<table>
<thead>
<tr>
<th>Typical laser-beam perturbations on OMEGA</th>
<th>YOC (square pulse)</th>
<th>YOC (step pulse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mistiming ($\sigma_{\text{rms}} \sim 9$ ps)</td>
<td>94.1%</td>
<td>92.2%</td>
</tr>
<tr>
<td>Static mispointing ($\sigma_{\text{rms}} \sim 10 \mu m$)</td>
<td>93.8%</td>
<td>91.9%</td>
</tr>
<tr>
<td>Power imbalance ($\sigma_{\text{rms}} \sim 3%$ overall)</td>
<td>93.6%</td>
<td>92.9%</td>
</tr>
<tr>
<td>All above perturbations together</td>
<td>93.4%</td>
<td>83.3%</td>
</tr>
</tbody>
</table>
Target offset imposes a dominant $\ell = 1$ perturbation to cause the asymmetry in implosions.
Target offsets larger than \(~20\-\mu m\) significantly reduce YOC for step-pulse designs.
Ice-layer-roughness effects can be simulated by using the measured spectrum.

\[
\Delta R(\theta) = \Delta R_0 + \sum_{\ell=1}^{n} \pm A_\ell \cos(\ell \theta)
\]

Different “phases” need to be explored.
Ice roughness of cryogenic-DT target at $\sigma_{\text{rms}} \sim 1 \mu m$ reduces the YOC to $\sim 65\%$
For the step-pulse design, target offset must be less than 10 μm to have a YOC $> 50%$

A good ice layer ($\sigma_{\text{rms}} = 1 \mu$m) can be achieved on OMEGA.
Single-mode simulations of laser imprinting up to $\ell = 500$ have been performed for the step-pulse designs SSD (1-cc, 1-THz) smoothing reduces the perturbation amplitude by a factor of ~3 to 4.
Laser imprinting is another important nonuniformity source for reducing YOC.

Laser-imprinting effects:
SSD on: YOC ~ 50%
SSD off: YOC ~ 25%

High modes ($\ell > 150$) can be stabilized by nonlocal electron heating of the ablation surface.*

DRACO simulations for individual shots agree with experimental YOC within a factor of ~2 or better
DRACO simulated $\langle T_i \rangle_n$ agree with the measured ion temperatures within the experimental uncertainty.

$\Delta T_i \sim \pm 0.5$ keV (experiment)
The relation of YOC versus TOC indicates the distortion of the “hot spot”

\[
\text{TOC} = \langle T_i \rangle_{\text{exp/DRACO}} / \langle T_i \rangle_{1-D}
\]

\[
YOC = 0.25 \times (\text{TOC})^4
\]

\[
YOC = 0.49 \times (\text{TOC})^4
\]

\[
\text{Yield} \sim V \times t_b \times \rho_{hs}^2 \times T_i^4
\]

Divided by 1-D values

\[
\text{YOC} = \frac{(\sqrt{V t_b \rho_{hs}})^2}{(\sqrt{V t_b \rho_{hs}})_{1-D}} \times (\text{TOC})^4
\]

Prefactor

\[
(\sqrt{V t_b \rho_{hs}}) / (\sqrt{V t_b \rho_{hs}})_{1-D} \sim 50\%
\]

TC8847
Dominant nonuniformity sources have been identified for improving neutron yield in cryogenic-DT implosions

- Cryogenic-DT implosions on OMEGA have reached high compressions with $\langle \rho R \rangle \sim 300 \text{ mg/cm}^2$, but the yield-over-clean (YOC) for neutron production is only on the level of $\sim 5\%$.

- Two-dimensional DRACO simulations reproduce well the YOC and ion temperature observed in experiments.

- To increase YOC to the ignition hydro-equivalent level of $\sim 15\%$ to 20%, the target offset must be $\leq 10 \mu \text{m}$ and smoothing by spectral dispersion (SSD) must be employed.