Two-Plasmon-Decay Hot-Electron Distributions from Anisotropic Thick-Target Bremsstrahlung Measurements

J. F. Myatt et al.
University of Rochester
Laboratory for Laser Energetics

38th Annual Anomalous Absorption Conference
Williamsburg, VA
1–6 June 2008
Bremsstrahlung from thick planar targets shows a dramatic anisotropy

- The direction of fast electrons must also be anisotropic.
- The electron source is assumed to be TPD.
- Directionality of TPD electrons is important for the calculation of fuel preheat*.
- The bremsstrahlung spectral distribution is well-modeled with a hot-electron temperature of 120 ± 20 keV.
- Bremsstrahlung angular distribution is consistent with $\Theta = 10^\circ \pm 5^\circ$, but requires the assumption of 15% backscatter.

*J. A. Delettrez, this conference
Collaborators

D. H. Edgell
W. Seka
A. V. Maximov
R. W. Short
J. A. Delettrez

University of Rochester
Laboratory for Laser Energetics
The experiments used six OMEGA interaction beams incident on a preformed CH plasma at an intensity of \(I = 4 \times 10^{14} \text{ W/cm}^2 \)

- The target was irradiated by six symmetrically arranged interaction beams
The theoretical bremsstrahlung angular distributions are based on cross sections obtained by partial-wave calculations in a relativistic self-consistent potential†

• This is the thick-target bremsstrahlung problem.

• The bremsstrahlung distribution is then constructed with the following assumptions:
 – the electrons are assumed to propagate in a straight line and run down in energy according to the csda stopping power*
 – the electrons are exponentially distributed in energy and characterized by the temperature T_{hot}

*ICRU Report #37.
Bremsstrahlung angular distributions depend upon the initial hot-electron temperature and the photon energy that is observed.

- The electron is assumed to travel in a straight line, and angles are relative to the momentum p_0.

Intensity/keV sr (arbitrary units)

[Diagram showing angular distributions with $T_{hot} = 140$ keV and $T_{hot} = 70$ keV, along with photons above 20 keV.]
The hardest photons are peaked into lobes, with little emission directly forward.

- The angular divergence of the hot electrons has not been taken into account.

Intensity/keV sr (arbitrary units)
The effect of angular divergence of the hot electrons on the bremsstrahlung emission is estimated in a simple way

- The electron momenta are assumed to be uniformly distributed into “beamlets” within a cone half angle Θ.

- The bremsstrahlung angular spectrum, differential in photon energy, is summed over each beamlet.

- In reality, one can imagine a more complicated angular dependence.
The model directly computes the signal expected in each channel of the HXRD, i.e., the HXRD response functions\(^1\) are taken directly into account.

An isotropic angular electron distribution, in the forward half-space, is not able to reproduce the bremsstrahlung distribution for small angles $0^\circ < \theta < 60^\circ$.

- The “bump” at $\theta = 40^\circ$ is not reproduced.
- Agreement doesn’t look too bad for large angles.
- Here $T_{\text{hot}} = 120$ keV.

![Graph showing HXRD signal vs. Observation angle](image-url)
The failure to reproduce the bremsstrahlung distribution for small angles $0^\circ < \theta < 60^\circ$ is more apparent in a polar plot.

![Diagram of HXRD signal (arbitrary units)]
Reasonable agreement with the observed bremsstrahlung angular distribution is achieved with a narrow beam of hot electrons, $\Theta = 10^\circ \pm 5^\circ$

- Here, a 15% backscatter has been assumed
Reasonable agreement with the observed bremsstrahlung angular distribution is achieved with a narrow beam of hot electrons, $\Theta = 10^\circ \pm 5^\circ$ (polar plot)
Multiple scattering needs to be taken into account when predicting the signal in channel #2; this will require Monte Carlo modeling.
Measurements of bremsstrahlung from thick planar targets show a dramatic anisotropy in emission

- The direction of fast electrons must also be anisotropic.
- The electron source is assumed to be TPD.
- Directionality of TPD electrons is important for the calculation of fuel preheat*.
- The bremsstrahlung spectral distribution is well-modeled with a hot-electron temperature of 120 ± 20 keV.
- Bremsstrahlung angular distribution is consistent with $\Theta = 10^\circ\pm5^\circ$, but requires the assumption of 15% backscatter.

*J. A. Delettrez, this conference