Time-Dependent Scattered-Laser-Light Spectroscopy in Direct-Drive Inertial Confinement Fusion Implosion Experiments

D. H. Edgell et al.
University of Rochester
Laboratory for Laser Energetics

38th Annual Anomalous Absorption Conference
Williamsburg, VA
1–6 June 2008
Summary

Detailed analysis of scattered light spectra from implosions indicate that absorption is slightly less than predictions.

- Time-dependent scattered-laser-light spectra in the SBS range (351±1 nm) are modeled by a combination of hydrodynamic and ray-tracing codes.
- Analysis of the spectra indicates that after the initial plasma production, the hydro-code over-predicts absorption by ~20%.
- Nonlinear LPI cross-beam power transfer via EM-seeded SBS may cause some laser power to “by-pass” the high absorption region.
- Precise knowledge of the absorption is important for implosion modeling and shock timing.
Collaborators

W. Seka
J. A. Delettrez
R. S. Craxton
V. N. Goncharov
I. V. Igumenshchev
J. F. Myatt
A. V. Maximov
R. W. Short
T. C. Sangster
R. E. Bahr

University of Rochester
Laboratory for Laser Energetics
Modeling Spectra

Time-dependent scattered-light spectra are modeled for OMEGA implosions

- **LILAC**: 1-D hydrodynamic code predicts time-dependent plasma profiles
 - using various electron-heat transport models: fixed flux-limited, Goncharov nonlocal model

\[\text{V. Goncharov et al., Phys. Plasmas 13, 012702 (2006).}\]
Time-dependent scattered-light spectra are modeled for OMEGA implosions

- **LILAC**: 1-D hydrodynamic code predicts time-dependent plasma profiles
 - using various electron-heat transport models: fixed flux-limited, Goncharov nonlocal model\(^1\)

- **SAGERAYS**: Ray traces 351-nm-drive laser light through plasma and calculates spectral shift along each path\(^2\)

\[
\Delta \omega = -\omega_0 \frac{\partial \tau_f}{\partial t} = \frac{\omega_0}{2c} \int \left(1 - \frac{n_e}{n_c}\right)^{-1/2} \frac{\partial}{\partial t} \left(\frac{n_e}{n_c}\right) \, ds
\]

- \(\tau_f\) = time of flight of light along ray
- \(n_e\) = plasma density
- \(n_c\) = plasma critical density
- \(\omega_0\) = laser-light angular frequency

Time-dependent scattered-light spectra are modeled for OMEGA implosions

- **LILAC**: 1-D hydrodynamic code predicts time-dependent plasma profiles
 - using various electron-heat transport models: fixed flux-limited, Goncharov nonlocal model\(^1\)

- **SAGERAYS**: Ray traces 351-nm-drive laser light through plasma and calculates spectral shift along each path\(^2\)

\[
\Delta \omega = -\omega_0 \frac{\partial \tau_f}{\partial t} + \frac{\omega_0}{2c} \int \left(1 - \frac{n_e}{n_c}\right)^{-\frac{1}{2}} \frac{\partial}{\partial t} \left(\frac{n_e}{n_c}\right) ds
\]

- **MATLAB** code calculates total spectrum collected by FABS from all 60 beams

Modeled scattered-light spectra show a detailed structure with both blue- and red-shifted components.

- Sharp initial blue shifts due to plasma production at laser pulse edges.
- Red-shifted “fan-tail” due to compression of target.

40-μm plastic shell
Fan-tail “fingers” come from groups of beams at similar angles with respect to the detector. Beams on the side farthest from the detector show the least shift.
Fan-tail “fingers” come from groups of beams at similar angles with respect to the detector.

Beams closer to the side of the detector show greater shifts.
Fan-tail “fingers” come from groups of beams at similar angles with respect to the detector.

Beams closer to the side of the detector show greater shifts.
Fan-tail “fingers” come from groups of beams at similar angles with respect to the detector.

- The rays that form this finger have turning points closest to the critical surface.

Beams on the side closest to the detector all show similar large shifts.
Modeled spectra show all the basic structures visible in the experimental spectra but differ in some details.
Modeled spectra show all the basic structures visible in the experimental spectra but differ in some details.

The observed differences are consistent with less power absorbed into the target than predicted, but is 20% reduced absorption sufficient to reconcile differences?
Modeling with a pulse scaled to give the experimentally observed absorption does not significantly improve the spectral shift predictions.

Reduced absorption is likely concentrated in the beams best coupled to target ablation surface.
Cross-Beam Power Transfer

EM-seeded SBS cross-beam power transfer may be the cause of the “missing” absorption

- Ion acoustic wave (IAW) transfers energy from a “pump” EM wave to a “seed” EM wave

\[\omega_{\text{pump}} = \omega_{\text{seed}} + \omega_{\text{IAW}} \]
\[\vec{k}_{\text{pump}} = \vec{k}_{\text{seed}} + \vec{k}_{\text{IAW}} \]
\[0 = \pm c_s |\vec{k}| + \vec{v}_f \cdot \vec{k} - \omega \]

Observed shifts of the order of angstroms needed to satisfy this dispersion relation.
EM-seeded SBS cross-beam power transfer may be the cause of the “missing” absorption

- Ion-acoustic wave (IAW) transfers energy from a “pump” EM wave to a “seed” EM wave
- Light entering the plasma can transfer energy to crossing light that is leaving the plasma
EM-seeded SBS cross-beam power transfer may be the cause of the “missing” absorption

- Ion-acoustic wave (IAW) transfers energy from a “pump” EM wave to a “seed” EM wave
- Light entering the plasma can transfer energy to crossing light that is leaving the plasma
- The result is that some laser pulse energy “bypasses” the absorption region, reducing the total absorbed power
Calculation of the resonance positions for EM-seeded SBS supports this speculation

• Follow a single beamlet \((\omega_1, k_1)\) and calculate \((\omega_2, k_2)\) of the beamlets crossing its path at each point.

• Zero crossings of the dispersion relation residual show where energy exchange can occur.

• Energy can bypass the highest absorption region near the turning point.
After shell burnthrough, modeling overpredicts the light scattered from D₂ in cryogenic targets.

More scattered light is seen experimentally than predicted (Reduced absorption already discussed).

Less scattered light is seen experimentally than predicted.

Either absorption underpredicted in D₂ OR power is lost through another pathway.

There is no evidence that nonlinear behavior, which would affect absorption, changes significantly.
The “missing” scattered light may be explained as energy lost through the two-plasmon decay (TPD).

- There is a sudden increase in emission at the $3\omega/2$ and $\omega/2$ at burnthrough.
- TPD is believed responsible for this emission.
- Absorption after burnthrough may still be anomalously low by $\sim 20\%$.
Summary/Conclusions

Detailed analysis of scattered light spectra from implosions indicate that absorption is slightly less than predictions

- Time-dependent scattered-laser-light spectra in the SBS range (351±1 nm) are modeled by a combination of hydrodynamic and ray-tracing codes.
- Analysis of the spectra indicates that after the initial plasma production the hydro-code over-predicts absorption by ~20%.
- Nonlinear LPI cross-beam power transfer via EM-seeded SBS may cause some laser power to “by-pass” the high absorption region.
- Precise knowledge of the absorption is important for implosion modeling and shock timing.