Optimization of Neutron Yields on the NIF from Room-Temperature DT Targets

R. S. Craxton, P. W. McKenty, J. A. Marozas, and A. M. Cok
University of Rochester
Laboratory for Laser Energetics

38th Annual Anomalous Absorption Conference
Williamsburg, VA
1–6 June 2008
Progress is being made toward designing high-neutron-yield polar-drive targets for the NIF

- Primary motivation is neutron diagnostic development
 - also test polar drive on the NIF

- Uniform drive is possible using existing NIF hardware
 - defocus the beams
 - repoint the beams
 - spread the beams within a quad

- The optimum target employs an SiO$_2$ shell with a CH ablator

- Yields around 10^{16} are expected for 1 MJ
Three hydrodynamic codes are being used iteratively

- **SAGE** is used to identify uniform irradiation conditions
- **LILAC** is used to optimize the 1-D design
 - from 350 kJ to 1.5 MJ
- **DRACO** is used for full 2-D simulations
 - initially focus on 350 kJ
The polar-drive designs use only readily available capabilities on the NIF

1. Phase plate
2. Defocus
3. Mirror tilts

Target

Best focus

7 m

40 cm

Frequency conversion
Target-plane distributions out of best focus are calculated using a simple geometrical-optics model.

*D. Munro parameterization
Target-plane profiles with greater spatial broadening can be obtained using split-quad focusing*

*Suggested by E. Moses
The 350-kJ design is diagnosed at 2.8 ns, just before peak neutron production.
At 2.8 ns the shell is imploding with a high degree of uniformity.
The original and Rev. 1 inner-cone designs are significantly different

Original
(a, b) = (739, 636) μm

Rev. 1
(a, b) = (824, 590) μm

D. Munro “Scoping model”

D. Munro “Ellipse model”
Substituting the Rev. 1 or Rev. 2 phase plates in the original design makes little difference to uniformity.
With the beam pointings optimized for SiO$_2$, a CH target with equivalent mass is underdriven at the equator.
The beam pointings can be adjusted to be optimum for CH

![Graph showing beam pointings and optimum shifts](image)

SiO$_2$ (28-μm rms)

CH (8-μm rms)

Optimum pointing shifts (μm)

<table>
<thead>
<tr>
<th></th>
<th>Ring 1</th>
<th>Ring 2</th>
<th>Ring 3</th>
<th>Ring 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>50</td>
<td>200</td>
<td>250</td>
<td>594</td>
</tr>
<tr>
<td>CH</td>
<td>100</td>
<td>300</td>
<td>350</td>
<td>694</td>
</tr>
</tbody>
</table>

t = 2.8 ns

Runs 5110,5152

TC8160
The highest 1-D yields are obtained from SiO$_2$ targets with CH ablators.

The highest 1-D yields are obtained from SiO$_2$ targets with CH ablators.
The anticipated yields are consistent with OMEGA results and a very simple scaling model.

Assume $R, T \propto E^{1/3}$
Yield $\propto volume \times time$ }
The 2-D DRACO simulation shows a fairly uniform implosion but with a weaker drive at the equator.
At peak neutron production the shell is nonuniform but there is a region of \sim10-keV ion temperature.
Progress is being made toward designing high-neutron-yield polar-drive targets for the NIF

Summary/Conclusions

Progress is being made toward designing high-neutron-yield polar-drive targets for the NIF

- Primary motivation is neutron diagnostic development
 - also test polar drive on the NIF

- Uniform drive is possible using existing NIF hardware
 - defocus the beams
 - repoint the beams
 - spread the beams within a quad

- The optimum target employs an SiO$_2$ shell with a CH ablator

- Yields around 10^{16} are expected for 1 MJ

The chances of finding improved designs are good.
At 2.8 ns the center-of-mass radius is $600 \pm 6.5 \, \mu\text{m}$ and its velocity is $6 \times 10^7 \, \text{cm/s} \pm 1.7\%$.
The final NIF phase-plate design is uncertain

Outer cone

<table>
<thead>
<tr>
<th>Profile #</th>
<th>(a, b) μm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(593, 343)</td>
<td>Original*</td>
</tr>
<tr>
<td>5</td>
<td>(593, 343)</td>
<td>Rev. 1 (300 eV)*</td>
</tr>
<tr>
<td>7</td>
<td>(697, 403)</td>
<td>Rev. 2 (285 eV)</td>
</tr>
</tbody>
</table>

Inner cone

<table>
<thead>
<tr>
<th>Profile #</th>
<th>(a, b) μm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(739, 636)</td>
<td>Original</td>
</tr>
<tr>
<td>6</td>
<td>(824, 590)</td>
<td>Rev. 1 (300 eV)</td>
</tr>
<tr>
<td>8</td>
<td>(968, 693)</td>
<td>Rev. 2 (285 eV)</td>
</tr>
</tbody>
</table>

*Under fabrication
The optimum pointing for SiO$_2$ appears to be not quite optimum for CH.

- Re-optimization for the actual target design is required.