Numerical Investigation of X-Ray Core Images from OMEGA Implosions Driven with Controlled Polar Illumination

OMEGA Shot 34668, PDD, D$_2$(15)CH[20], 40 beams, 15.4 kJ

DD yield 2.9×10^{10}

KB3 time-integrated x-ray image

DD yield 4.1×10^{10}

DRACO/Spect3D

R. Epstein, et al.
University of Rochester
Laboratory for Laser Energetics

35th Annual Anomalous Absorption Conference
Fajardo, Puerto Rico
27 June–1 July 2005
Summary

2-D DRACO/Spect3D* simulated x-ray images show good agreement with images of imploded cores from polar direct drive experiments

- Successfully attributing the low-order asymmetry of implosion images to controlled polar drive in OMEGA experiments supports ongoing PDD (polar direct-drive) design work.

- The size, asymmetry, and history of observed images are reproduced by
 - 2-D hydrodynamic simulation
 - radiation-transport postprocessing

- Additional image asymmetry can be attributed to the viewing angle in some cases, rather than unintended illumination imbalance.

*Prism Computational Sciences, Inc., Madison, WI
Collaborators

T. J. B. Collins, R. S. Craxton, J. A. Delettrez, I. V. Igumenshchev,
F. J. Marshall, J. A. Marozas, P. W. McKenty, P. B. Radha,
S. Skupsky, and V. A. Smalyuk

University of Rochester
Laboratory for Laser Energetics
Simulated images are obtained from 2-D hydrodynamic simulation and 3-D radiation transport postprocessing

- **DRACO hydrocode**
 - 2-D Lagrangian hydrodynamics with interface tracking
 - PDD irradiation simulated with 2-D ray tracing

- **Spect3D* radiation-transport postprocessing**
 - Full 3-D straight-line integration of the equation of transfer
 - Tabulated LTE opacities valid for intended application
 - Camera filtering, response, and viewing angles included

*Prism Computational Sciences, Inc., Madison, WI
OMEGA experiments show the effects of known polar nonuniformities on the shape of compressed cores.

Shot 35173, prolate energy distribution
\[\sigma_\ell = 2 = -13.2\% \]

Shot 35174, prolate energy distribution
\[\sigma_\ell = 2 = 7.2\% \]

\[I_{\text{laser}}(\theta) = I_0 \left[1 + \sigma_2 \hat{P}_2(\cos \theta) \right] \]
Target cores imploded with controlled polar asymmetry match the size and shape of 2-D DRACO and Spect3D\(^*\) simulations.

Shot 35173
- Prolate
- \(\sigma_{\ell=2} = 13.2\%\)

gmxi (2 to 7 keV)
- \(t = 1.4\) ns

Shot 35174
- Oblate
- \(\sigma_{\ell=2} = 7.2\%\)

gmxi (4 to 7 keV)
- \(t = 1.65\) ns

\(^*\)Prism Computational Sciences, Inc., Madison, WI
Image distortion parameters are estimated by fitting data with noncircular intensity contours

- Find image intensity contours:
 \[r(\theta) = \rho (1 + a_1 \cos \theta + a_2 \cos 2\theta + a_4 \cos 4\theta), \] such that \(I(x,y) \approx I(\rho) \)

Shot 35173, prolate
\[\sigma_{\ell} = 2 = 13.2\% \] P2 drive nonuniformity:
- \(I(x,y) \) data
- \(\text{gmxi (2 to 7 Kev)} \)
- \(a_2 = 0.20 \)
- fit to \(I(\rho) \) contour map
- \(t = 1.4 \text{ ns} \)
- Fit residual
Target cores imploded with controlled polar asymmetry match the size and shape of 2-D DRACO and Spect3D* simulations.

Shot 35173
- Prolate
- $\sigma_{\ell=2} = 13.2\%$
- $a_2 = 0.20$

Shot 35174
- Oblate
- $\sigma_{\ell=2} = 7.2\%$
- $a_2 = 0.21$

Prism Computational Sciences, Inc., Madison, WI
A measured prolate core-image sequence with equatorial stagnation is reproduced with 2-D DRACO and Spect3D*

Shot 35173, prolate drive
\(\Delta t = 58 \text{ ps}, \; \sigma_{\ell=2} = -13.2\%, \; \text{xrfc}, \; \text{Be filter} \)

Peak compression

DRACO and Spect3D

\[a_2 = 0.58 \quad 0.44 \quad 0.48 \quad 0.38 \quad 0.27 \quad 0.10 \]

\[a_2 = 0.38 \quad 0.45 \quad 0.46 \quad 0.37 \quad 0.27 \quad 0.16 \]

*Prism Computational Sciences, Inc., Madison, WI
The observed time-resolved P2 harmonic distortion parameter of the prolate stagnation sequence is reproduced with a 2-D DRACO and Spect 3D* simulation.

Shot 35173, prolate drive, $\sigma_\ell = 2 = 13.2\%$, xrfc, Be filter

Intensity contours: $I(x,y) = I(\rho)$, $r(\theta) = \rho(1 + a_2 \cos2\theta + a_4 \cos4\theta)$
The NIF 48-quad PDD configuration was simulated on OMEGA by repointing 40 beams.

42° beams moved to 66.6°
58.8° beams moved to 83.5°
21° beams moved to 33.4°
The core-stagnation symmetry is affected by the illumination configuration.

Time-integrated KB microscope images

60 beams
- TCC: 15.6 kJ
- \(Y_{DD} = 8.4 \times 10^{10} \)

40 beams
- PDD: 15.4 kJ
- \(Y_{DD} = 2.9 \times 10^{10} \)

Shot 34644

Shot 34668

100 \(\mu \)m
DRACO simulations of the PDD experiments reproduce the qualitative shape of the compressed core.

OMEGA implosions at 15-atm, D₂-filled, 20-μm-thick CH shells

40 beams
PDD shot 34668
15.4 kJ

DD yield
2.9 \times 10^{10}

40 beams
PDD simulation*
shot 34668

DD yield
4.1 \times 10^{10}

KB microscope view

*Prism Computational Sciences Inc., Madison WI
PDD x-ray image asymmetry is due to the oblique viewing angle and absorption by the shell.

Mass density and electron temperature near peak compression
Shot 34668, t = 2.2 ns

\(\rho \text{ (g/cm}^3\text{)} \)

\(T_e \text{ (keV)} \)
Summary/Conclusions

2-D DRACO/Spect3D* simulated x-ray images show good agreement with images of imploded cores from polar direct drive experiments

- Successfully attributing the low-order asymmetry of implosion images to controlled polar drive in OMEGA experiments supports ongoing PDD (polar direct-drive) design work.

- The size, asymmetry, and history of observed images are reproduced by
 - 2-D hydrodynamic simulation
 - radiation-transport postprocessing

- Additional image asymmetry can be attributed to the viewing angle in some cases, rather than unintended illumination imbalance.