Experimental Scalings for the Two-Plasmon-Decay Instability

C. Stoeckl *et al.* Laboratory for Laser Energetics University of Rochester 33rd Anomalous Absorption Conference Lake Placid, NY 22–27 June 2003

Collaborators

R. E. Bahr V. Yu. Glebov A. V. Maximov J. Myatt T. C. Sangster W. Seka B. Yaakobi

Laboratory for Laser Energetics University of Rochester

> J. Jadeau D. Babonneau F. Wagon

CEA Bruyères-le-Châtel, France

Summary

The hot electrons from the TPD instability scale predominantly with intensity and density scale length

- The hot-electron production from the TPD instability shows a strong exponential scaling with total (overlapped) intensity in both planar and spherical experiments.
- The TPD instability appears to saturate above 10¹⁵ W/cm² for planar experiments with NIF-relevant scale length, at ~0.1% fractional preheat.
- Beam smoothing techniques affect the hot-electron production only moderatly, polarization wedges decrease (by a factor of 2) the hard-x-ray signal, 1-THz SSD increases the signal by 20%.
- The density scale length at quarter-critical density has a strong effect on the TPD instability, both in magnitude and scaling with intensity.

Hot electrons can significantly reduce the target gain

- The effect of an 80-keV hot-electron tail was simulated using the fast-electron package in *LILAC*.
- About 4% of the energy absorbed into fast electrons couples into the DT-ice fuel layer.

Four hard x-ray detectors using single-edge-type filters are used to measure the hot-electron temperature

LLE

Improvements in the single-beam nonuniformity by SSD or PS affect the hard x-ray emission for spherical targets

• CH shell, 950-μm diam., 1-ns square, varying single-beam intensity

In spherical geometry, the overlapped intensity on target depends on the target diameter

The TPD instability scales with overlapped intensity in spherical implosion experiments

 Data taken on 60-beam OMEGA shots with CH shells varying from 900-μm to 1100-μm diameter

For current OMEGA implosions the temporal evolution of the hard x rays reflects the increasing density scale length

The hard-x-ray detectors (scintillator-PMT) are cross-calibrated with ${\rm K}_{\alpha}$ emission from special targets $$_{\rm UR}$$

 Comparison of signals and some analysis allow HXRD's to be absolutely calibrated for pure-CH or D₂ targets.

In planar experiments TPD scales with overlapped intensity and saturates above 10^{15} W/cm²

Planar CH targets, 100 μ m thick, multiple-overlapping beams

The hard-x-ray signal is strongly affected by the density scale length

• CH shell, 950-μm diameter, 1 ns square, varying overcoat

UR

Simulations show that the density scale length is shorter for the high-Z targets

E12315

Long-scale-length planar and spherical experiments show different intensity scalings

Summary/Conclusions

The hot electrons from the TPD instability scale predominantly with intensity and density scale length

- The hot-electron production from the TPD instability shows a strong exponential scaling with total (overlapped) intensity in both planar and spherical experiments.
- The TPD instability appears to saturate above 10¹⁵ W/cm² for planar experiments with NIF-relevant scale length, at ~0.1% fractional preheat.
- Beam smoothing techniques affect the hot-electron production only moderatly, polarization wedges decrease (by a factor of 2) the hard-x-ray signal, 1-THz SSD increases the signal by 20%.
- The density scale length at quarter-critical density has a strong effect on the TPD instability, both in magnitude and scaling with intensity.