Experimental Scalings for the Two-Plasmon-Decay Instability

C. Stoeckl et al.
Laboratory for Laser Energetics
University of Rochester

Overlapped intensity (10^{14} W/cm2)

Fractional fast-electron preheat (preheat energy/laser energy)

Systematic error bar

H: 250 μm ϕ
L: 500 μm ϕ
Collaborators

R. E. Bahr
V. Yu. Glebov
A. V. Maximov
 J. Myatt
T. C. Sangster
 W. Seka
B. Yaakobi

Laboratory for Laser Energetics
University of Rochester

J. Jadeau
D. Babonneau
 F. Wagon

CEA
Bruyères-le-Châtel, France
Summary

The hot electrons from the TPD instability scale predominantly with intensity and density scale length.

- The hot-electron production from the TPD instability shows a strong exponential scaling with total (overlapped) intensity in both planar and spherical experiments.

- The TPD instability appears to saturate above 10^{15} W/cm2 for planar experiments with NIF-relevant scale length, at \sim0.1% fractional preheat.

- Beam smoothing techniques affect the hot-electron production only moderately, polarization wedges decrease (by a factor of 2) the hard-x-ray signal, 1-THz SSD increases the signal by 20%.

- The density scale length at quarter-critical density has a strong effect on the TPD instability, both in magnitude and scaling with intensity.
Hot electrons can significantly reduce the target gain

- The effect of an 80-keV hot-electron tail was simulated using the fast-electron package in LILAC.
- About 4% of the energy absorbed into fast electrons couples into the DT-ice fuel layer.

![Diagram showing the effect of hot electrons on DT fuel and DT-ice layer.]

Fractional energy into fast electrons (%)

![Graph showing the relationship between fractional energy in DT-ice layer and gain.]

Fractional energy in DT-ice layer (%)
Four hard x-ray detectors using single-edge-type filters are used to measure the hot-electron temperature.
Improvements in the single-beam nonuniformity by SSD or PS affect the hard x-ray emission for spherical targets.

- CH shell, 950-\textmu m diam., 1-ns square, varying single-beam intensity

\[
\text{Signal} = 0.013 \times \exp\left(\frac{I_{14}}{1.2}\right)
\]

Absorbed energy (% of energy)
In spherical geometry, the overlapped intensity on target depends on the target diameter.
The TPD instability scales with overlapped intensity in spherical implosion experiments

- Data taken on 60-beam OMEGA shots with CH shells varying from 900-μm to 1100-μm diameter

Diameter (μm)

Signal (arbitrary units)

Temperature T_{hot}

$3\omega/2$

~ exp ($I_{14}/1.2$)

X rays > 50 keV

Overlapped intensity (10^{14} W/cm²)
Planar-foil experiments use three sets of delayed beams, six of which are interaction beams.
For current OMEGA implosions the temporal evolution of the hard x rays reflects the increasing density scale length.

- Current OMEGA implosion experiments
- Multibeam, long-scale-length interaction experiments
The hard-x-ray detectors (scintillator-PMT) are cross-calibrated with K_α emission from special targets.

- Comparison of signals and some analysis allow HXRD’s to be absolutely calibrated for pure-CH or D$_2$ targets.

![Diagram showing the interaction of electrons and x-rays with the target materials.](image-url)
In planar experiments TPD scales with overlapped intensity and saturates above 10^{15} W/cm².

- Planar CH targets, 100 μm thick, multiple-overlapping beams

![Graph showing the relationship between overlapped intensity and fractional fast-electron preheat.](image)
The hard-x-ray signal is strongly affected by the density scale length.

- CH shell, 950-μm diameter, 1 ns square, varying overcoat

Signal (arbitrary units) ~ \(\exp \left(\frac{I_{14}}{1.2} \right) \)
Simulations show that the density scale length is shorter for the high-Z targets.

- $T_e \sim 2.5$ keV at $0.25 \, n_c$

![Graph showing n_e/n_c vs. Distance (μm) for different materials: Au, Cu, CH.](image-url)

- Materials: Au, Cu, CH
Long-scale-length planar and spherical experiments show different intensity scalings

\[\sim \exp \left(\frac{I_{14}}{1.2} \right) \]

\[\sim \exp \left(\frac{I_{14}}{0.7} \right) \]
Summary/Conclusions

The hot electrons from the TPD instability scale predominantly with intensity and density scale length

• The hot-electron production from the TPD instability shows a strong exponential scaling with total (overlapped) intensity in both planar and spherical experiments.

• The TPD instability appears to saturate above 10^{15} W/cm2 for planar experiments with NIF-relevant scale length, at ~0.1% fractional preheat.

• Beam smoothing techniques affect the hot-electron production only moderately, polarization wedges decrease (by a factor of 2) the hard-x-ray signal, 1-THz SSD increases the signal by 20%.

• The density scale length at quarter-critical density has a strong effect on the TPD instability, both in magnitude and scaling with intensity.