

, angle wit offoot an ootion

Fredrick H. Séguin et al.

Massachusetts Institute of Technology Plasma Science and Fusion Center

Fredrick H. Séguin et al.

Massachusetts Institute of Technology Plasma Science and Fusion Center

Fredrick H. Séguin et al.

Massachusetts Institute of Technology Plasma Science and Fusion Center

Fredrick H. Séguin et al.

Massachusetts Institute of Technology Plasma Science and Fusion Center

For asymmetric OMEGA laser drive $I(\phi)$ dominated by mode numbers ≤ 3 , applied to room-temperature capsules with thick CH shells,

- $\delta I(\phi) = I(\phi) \langle I \rangle$ produces $\delta \rho R(\phi) = \rho R(\phi) \langle \rho R \rangle$ with the same shape;
- o $\delta \rho R(\phi)$ maintains that shape throughout the implosion ...
- with amplitude depending primarily on the radial convergence ratio C_r :

$$\frac{\delta \rho R(\phi)}{\langle \rho R \rangle} \approx 0.4 \left(C_r - 1 \right) \frac{\delta I(\phi)}{\langle I \rangle}$$

• Modes 1 and 2 grow at the same rate, with no phase inversions.

Collaborators

University of Rochester Laboratory for Laser Energetics

M.I.T. Plasma Science and Fusion Center

J.R. Rygg J.A. Frenje C.K. Li R.D. Petrasso* J.A. Delettrez J.M. Soures V.Yu. Glebov V. Goncharov J. Knauer D.D. Meyerhofer T.C. Sangster R.L. Keck P.W. McKenty F.J. Marshall V. Smalyuk Lawrence Livermore National Laboratory

S. Hatchett

*Visiting Scientist, LLE

Fredrick H. Séguin et al. Massachusetts Institute of Technology Plasma Science and Fusion Center

This work is a logical extension of previous work that showed correlations between drive asymmetry and ρR asymmetry

- Small changes in $I(\phi)$ result in changes in $\rho R(\phi)^*$
- o $\delta \rho R$ growth due to Bell-Plesset-like convergence effects should lead at bang time to**

$$\frac{\langle \delta \rho R \rangle_{rms}}{\langle \rho R \rangle} = K \left(C_r - 1 \right) \frac{\langle \delta I \rangle_{rms}}{\langle I \rangle}$$

 Data for low modes involving room-temperature and cryo D₂ capsules at OMEGA were roughly consistent with this growth** if

$$K \sim \frac{1}{2}$$

*F.H. Séguin *et al.*, Phys. Plasmas 9, 3558 (2002). **C.K. Li *et al.*, submitted to Phys. Rev. Lett.

New experiments have been performed for controlled drive asymmetries and accurate study of $\rho R(\phi)$ at different times

60-Beam OMEGA laser:

Pulse shape:	1-ns square
Beam smoothing:	2D-SSD + PS
On-target energy:	~23 kJ

Different *I(\u03c6)* were generated by offsetting capsules from Target Chamber Center:

 $\rho R(\phi)$ was inferred from the energy lost by D³He protons leaving at different ϕ :

Proton spectra were measured by 6 WRF proton spectrometers

There are two distinct time intervals during a D³He-capsule implosion when D³He protons are generated*

*Petrasso et al., Phys. Rev. Lett. 90, 095002-1 (2003).

With no offset,

all spectra are similar and pR is nearly independent of angle

With a 50- μ m offset, spectra (and ρ R) are different at different angles

Another way to show the deduced $\rho R vs \phi$

Mode amplitudes for the fits $\rho R(\phi) = \sum_{\ell} A_{\ell} P_{\ell}(\cos(\phi))$

Mode amplitudes for the fits $\rho R(\phi) = \sum_{\ell} A_{\ell} P_{\ell}(\cos(\phi))$

$\langle \rho R \rangle$ at shock time is independent of offset, while $\langle \rho R \rangle$ at bang time decreases with offset

If we average $\delta \rho R(\phi)$ and $\delta I(\phi)$ over 4π , are they compatible with the previously-proposed scaling

$$\frac{\langle \delta \rho R \rangle_{rms}}{\langle \rho R \rangle} = K \left(C_r - 1 \right) \frac{\langle \delta I \rangle_{rms}}{\langle I \rangle}$$
?

EVALUATE: The angular dependence of the laser drive, $I(\phi)$, is carried through to $\rho R(\phi)$ at shock time and at bang time

The angular dependence of the laser drive, $I(\phi)$, is carried through to $\rho R(\phi)$ at shock time and at bang time

For asymmetric OMEGA laser drive $I(\phi)$ dominated by mode numbers ≤ 3 , applied to room-temperature capsules with thick CH shells,

- $\delta I(\phi) = I(\phi) \langle I \rangle$ produces $\delta \rho R(\phi) = \rho R(\phi) \langle \rho R \rangle$ with the same shape;
- o $\delta \rho R(\phi)$ maintains that shape throughout the implosion ...
- with amplitude depending primarily on the radial convergence ratio C_r :

$$\frac{\delta \rho R(\phi)}{\langle \rho R \rangle} \approx 0.4 \left(C_r - 1 \right) \frac{\delta I(\phi)}{\langle I \rangle}$$

• Modes 1 and 2 grow at the same rate, with no phase inversions.

Fredrick H. Séguin et al.

Massachusetts Institute of Technology Plasma Science and Fusion Center

