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Nonlinear interaction between crossing laser beams
influences the propagation of laser light through the
coronal plasmas of direct-drive targets

• The strongest interaction between crossing laser beams through
ion-acoustic perturbations occurs close to the critical-density surface,
where thresholds for SBS and filamentation are likely to be exceeded.

• Crossed-beam interaction increases the spatial and temporal
incoherence of laser irradiation in the near-critical density region.

Summary
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Outline

1. Motivation:

• The crossed-beam interaction can influence laser propagation
     and absorption near critical density.

2. Non-paraxial modeling of light propagation near critical density

3. Oblique incidence of a laser beam on a critical-density surface

4. Incoherent crossing laser beams



Modeling of SBS and self-focusing near critical-density surface
requires a non-paraxial description of light propagation
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∑ Simulations are performed with a 2-D non-paraxial code
in the region 40 ¥ 200 laser wavelengths.

∑ Due to absorption and field swelling the average intensity on the boundary
Ib = 0.46 ·IÒ, ·IÒ is the average intensity in vacuum.

Profiles of density, flow, and temperature
modeling OMEGA plasma near critical density
(similar to simulations by SAGE).
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The non-paraxial model allows study of nonlinear
light propagation for oblique incidence on the
critical-density surface
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∑ No spreading of backscattered light in angle or frequency is observed
because the reflection from the critical-density surface does not seed
backward SBS, and backward SBS, growing from noise, is weak.

∑  DPP beam with average intensity ·I Ò14 = 6 and angle of incidence 20∞
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The spectrum of backscattered light is determined
by backward SBS and reflection from the
critical-density surface

P2236 Frequency spectra at a given angle

R/Rlinear = 1.62Linear regime

Full
simulation

DPP beam with
average intensity
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The angular and frequency width of backscattered
light increases under crossed-beam irradiation

P2185a
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Under crossed-beam irradiation the inhomogeneity
scale of laser intensity is much smaller than under
single-beam irradiation

One beam ·lÒ14 = 9 Two crossing beams
·lÒ14 = 4.5 in each beam
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The assumption of a small correlation angle for
the incident light allows the derivation of the dispersion
relation for the TPD instability
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The growth rate of the TPD instability can
be proportional to the average laser intensity
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The growth rate of the TPD instability can be
determined by the overlapped beam intensity
of crossing incoherent beams

For certain orientations
of a plasmon k-vector:

TPD resonance conditions for two beams
are similar, and growth rate g depends on the
overlapped beam intensity.
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Iav= 4 ◊1014 W/cm2the threshold intensity
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Nonlinear interaction between crossing laser beams
influences the propagation of laser light through the
coronal plasmas of direct-drive targets

• The strongest interaction between crossing laser beams through
ion-acoustic perturbations occurs close to the critical-density surface,
where thresholds for SBS and filamentation are likely to be exceeded.

• Crossed-beam interaction increases the spatial and temporal
incoherence of laser irradiation in the near-critical density region.

• The influence of crossed-beam irradiation on laser imprint is studied.

Summary/Conclusions


