Nonlinear Propagation of Crossing Laser Beams in Direct-Drive Target Plasmas

A. Maximov, J. Myatt, R. W. Short, and W. Seka Laboratory for Laser Energetics University of Rochester 33rd Anomalous Absorption Conference Lake Placid, NY 22–27 June 2003

Summary

Nonlinear interaction between crossing laser beams influences the propagation of laser light through the coronal plasmas of direct-drive targets

- The strongest interaction between crossing laser beams through ion-acoustic perturbations occurs close to the critical-density surface, where thresholds for SBS and filamentation are likely to be exceeded.
- Crossed-beam interaction increases the spatial and temporal incoherence of laser irradiation in the near-critical density region.

- 1. Motivation:
 - The crossed-beam interaction can influence laser propagation and absorption near critical density.
- 2. Non-paraxial modeling of light propagation near critical density
- 3. Oblique incidence of a laser beam on a critical-density surface
- 4. Incoherent crossing laser beams

Modeling of SBS and self-focusing near critical-density surface requires a non-paraxial description of light propagation

Backward SBS gain:

 $G_{sbs} = 1.20 \langle I \rangle_{14}$

- Simulations are performed with a 2-D non-paraxial code in the region 40 $\times 200$ laser wavelengths.
- Due to absorption and field swelling the average intensity on the boundary $I_b = 0.46 \langle I \rangle$, $\langle I \rangle$ is the average intensity in vacuum.

Self-focusing parameter: p_{sf} = 0.25 $\langle I \rangle_{14}$ The non-paraxial model allows study of nonlinear light propagation for oblique incidence on the critical-density surface

• DPP beam with average intensity $\langle I \rangle_{14} = 6$ and angle of incidence 20°

 No spreading of backscattered light in angle or frequency is observed because the reflection from the critical-density surface does not seed backward SBS, and backward SBS, growing from noise, is weak.

The spectrum of backscattered light is determined by backward SBS and reflection from the critical-density surface

Frequency spectra at a given angle

The angular and frequency width of backscattered light increases under crossed-beam irradiation

Under crossed-beam irradiation the inhomogeneity scale of laser intensity is much smaller than under single-beam irradiation

The assumption of a small correlation angle for the incident light allows the derivation of the dispersion relation for the TPD instability

Consider a plasmon $\Psi_{\alpha}(\vec{k})$ in a homogeneous plasma model:

The following correlation properties are assumed: $\langle \Psi_{\alpha}(\vec{k}_1)\Psi_{\alpha}^*(\vec{k}_2)v_0(\vec{k}_{01})v_0^*(\vec{k}_{02})\rangle = \langle \Psi_{\alpha}(\vec{k}_1)\Psi_{\alpha}^*(\vec{k}_2)\rangle\langle v_0(\vec{k}_{01})v_0^*(\vec{k}_{02})\rangle$,

where
$$\langle \mathbf{v}_0(\vec{\mathbf{k}}_{01})\mathbf{v}_0^*(\vec{\mathbf{k}}_{02})\rangle = \frac{\langle |\mathbf{v}_0|^2 \rangle \delta(\vec{\mathbf{k}}_{01} - \vec{\mathbf{k}}_{02})}{\mathbf{k}_0 \Delta \theta}$$
 for light smoothed with DPP.

Standard frequency-matching conditions for TPD instability:

$$\begin{split} \boldsymbol{\omega}^2 &= \boldsymbol{\omega}_{p0}^2 + 3k^2 v_{Te}^2, \\ \left(\boldsymbol{\omega}_0 - \boldsymbol{\omega}\right)^2 &= \boldsymbol{\omega}_{p0}^2 + \left(\vec{k}_{0C} - \vec{k}\right)^2 v_{Te}^2 \end{split}$$

The growth rate of the TPD instability can be proportional to the average laser intensity

Equation for the instability increment γ :

$$\frac{2(\gamma+\gamma_{e})}{\omega_{p0}} = -Im\int d\vec{k}_{0} \frac{|V_{0}|^{2}(\vec{k}_{0})F(\vec{k}_{0},\vec{k})}{2i(\gamma+\gamma_{e})\omega_{p0} - 3v_{Te}^{2}\left[\left(\vec{k}_{0}-\vec{k}\right)^{2}-\left(\vec{k}_{0C}-\vec{k}\right)^{2}\right]}$$
where $F(\vec{k}_{0},\vec{k}) = \frac{\left[k_{0}^{2}-2\vec{k}_{0}\vec{k}\right]^{2}}{4\left[\left(\vec{k}_{0}-\vec{k}\right)^{2}k^{2}\right]}k_{\perp}^{2}$ γ_{e} : damping coefficient

 $\int d\vec{k}_0 \rightarrow \int d\theta$: to integrate over the reasonant denominator in the integrand

• Small angular width
$$\Delta \theta$$
: $\mathbf{A} \equiv \frac{(\gamma + \gamma_e) \omega_{p0}}{3 \mathbf{v}_{Te}^2 \mathbf{k}_{\parallel} \mathbf{k}_0 |\sin \theta_c| \Delta \theta} >> 1$ $\gamma + \gamma_e = \sqrt{\langle |\mathbf{v}_0|^2 \rangle F(\vec{k}_{0C}, \vec{k})/4}$

Large angular width
$$\Delta \theta$$
: A << 1
 $\gamma + \gamma_{e} = \omega_{p0} \frac{\pi \langle |v_{0}|^{2} \rangle F(\vec{k}_{0C}, \vec{k})}{12v_{Te}^{2} k_{\parallel} k_{0} |sin\theta_{c}| \Delta \theta}$

•

The growth rate of the TPD instability can be determined by the overlapped beam intensity of crossing incoherent beams

For certain orientations of a plasmon k-vector:

$$\left(\vec{k}\vec{k}_{0C1}\right)\approx\left(\vec{k}\vec{k}_{0C2}\right)$$

TPD resonance conditions for two beams are similar, and growth rate γ depends on the overlapped beam intensity.

 $\vec{k} = \vec{k}_{\perp} + \vec{k}_{\parallel} \qquad \Delta \theta$ $\vec{k}_{0}C1$ $\vec{k}_{\perp} \odot \vec{E}_{0} \odot$ $\theta_{c} \vec{k}_{\parallel}$ $\vec{k}_{0}C2$ $\vec{k}_{0} - \vec{k}_{\parallel}$

For the parameters: $k_0 \lambda_{De} = 0.15$, $k_{\parallel} = 1.5k_0$, $\Delta \theta = 0.2$, $\theta_c \approx 20^0$, $\gamma_e / \omega_{p0} = 2 \cdot 10^{-3}$ the threshold intensity $I_{av} = 4 \cdot 10^{14} \text{ W/cm}^2$

Summary/Conclusions

Nonlinear interaction between crossing laser beams influences the propagation of laser light through the coronal plasmas of direct-drive targets

- The strongest interaction between crossing laser beams through ion-acoustic perturbations occurs close to the critical-density surface, where thresholds for SBS and filamentation are likely to be exceeded.
- Crossed-beam interaction increases the spatial and temporal incoherence of laser irradiation in the near-critical density region.
- The influence of crossed-beam irradiation on laser imprint is studied.