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Improved-stability, high-gain designs
are considered for direct-drive ICF

• Direct drive offers the possibility of significantly higher gains
than indirect-drive ICF.

• New designs show significant improvements in shell stability
and target gain.

• Such designs implement adiabat shaping and foams wicked
with DT.

• The possibility of performing direct-drive ignition experiments
in NIF’s x-ray drive configuration (polar direct drive) is
currently being considered.

Summary



TC6204

A standard “all-DT” ignition design consists of a
DT-ice layer overcoated with a thin polymer layer

NIF OMEGA

rR (mg/cm2) 1300 300

Yield 2.5 ¥ 1019 1 ¥ 1014

Abs. (%)   62  40

DT ice
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80 mm
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There are several disadvantages
in using an “all-DT” design

• Advantages

– Simplicity of the design

– Easy to tune (need to control one shock and
one compression wave)

• Disadvantages

– Marginal shell stability (severe constraints on laser smoothing)

– Low laser absorption (60% for NIF and 40% for OMEGA)

– Moderate yields
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Shell stability and compressibility
depend on the adiabat
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• Rayleigh–Taylor instability growth g = aRT(kg)1/2 – bRTkVa    Va ~ a3/5

1M. Herrmann et al., Phys. Plasmas 8, 2296 (2001).
2R. Betti et al., Phys. Plasmas 9, 2277 (2000).

a of ablated mass
can be increased
without affecting Emin

Mass density (g/cm3)
Adiabat a
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Stability of direct-drive targets can be substantially
enhanced using adiabat shaping

Pressure
relaxation1

Flat adiabat
Shaped adiabat

Design Decaying shock1

(picket design)

Laser
profile

Abiabat
profle

Power

t

Adiabat

Density

1 V. N. Goncharov et al., Phys. Plasmas 10, 1906 (2003).
2 K. Anderson et al., submitted to Phys. Plasmas.

Laser
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a = 3 picket-pulse target designs are considered
for the NIF and OMEGA

A potential target for polar direct drive

tp = 200 ps
Pmax = 400 TW
rRmax = 1.45 g/cm2

Y = 3 ¥ 1019

Abs = 80%

tp = 50 ps
Pmax = 25 TW
rRmax = 300 mg/cm2

Y = 6 ¥ 1014; abs = 57%
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Multimode ORCHID simulations demonstrate better
stability of the shaped-adiabat design

Shell is significantly less distorted in the picket design.

Imprint simulations:  l = 2–200, DPP + PS, 1-THz SSD; OMEGA design
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Both NIF and OMEGA picket designs are predicted
to stay intact during the acceleration phase

• 1-THz, 2-D SSD; 80-nm outer-surface roughness; 1-mm inner-ice roughness
• The bubble amplitude is calculated using the stability postprocessor.1

1 V. N. Goncharov et al., Phys. Plasmas 7, 5118 (2000).
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2-D ORCHID simulations of an OMEGA target show
higher nonuniformity levels in the relaxation design
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Mode decomposition reveals enhanced high l-mode
amplitudes in the relaxation design

Beginning of acceleration
(imprint amplitudes)
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High l-mode enhancement is due to early-time
Rayleigh–Taylor growth

Early-time RTI duration

Time

Power
Decaying

shock

Relaxation

Shock

CH

DT

Unstable
interface

Position (mm)

370 378376374372

P
re

ss
u

re

D
en

sity



TC6218

A surrogate foam target is proposed to mimic
conditions of the cryogenic designs

•  Cryogenic targets cannot be routinely used to study details of implosion.

Requirements for a surrogate:

1. Design should capture early RT growth.

• Density ratio overcoat/foam = 3 to 4

• Overcoat thickness 3 to 5 mm

2. Adiabat shaping is not compromised by
radiation from corona (r <  500 mg/cc,
restrictions on high-Z constituents).

3. No additional instabilities are created
(r > 150 mg/cc).

• An unstable radiation ablation front
is created in low-density foams.

The optimal foam density is 180 to 250 mg/cc.

Warm foam
80–100 mm

CH,
3–5 mm

Al, 500 Å

430 mm
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Adiabat shaping is compromised
by coronal radiation in CH shells

At the shock breakout End of acceleration phase
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Adiabat shaping is maintained throughout
the implosion in 200-mg/cc foam design

Y = 1.7 ¥ 1011 for 15-atm-D2 fill, rRtotal  = 166 (no picket),
162 (picket) mg/cm2
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Multimode DRACO simulations indicate
greater shell stability in the picket design

OMEGA foam target (200 mg/cm3) with 5-mm-CH overcoat
(modes 2 to 200; 1-THz, 2-D SSD with PS)
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High-gain “wetted foam” designs
have been considered for the NIF

Polyimide, 3 mm

G = 124
Vimp = 3 ¥ 107 (cm/s)
rRm = 1.7 g/cm2

Abs = 85%

G = 82
Vimp = 3.9
rRm = 1.5
Abs = 86%
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The possibility of performing direct-drive ignition
experiments in NIF’s x-ray drive configuration
(polar direct drive) is currently considered1

NIF x-ray drive beam ports
48 beam direct-drive directions

At t = 0 with 100% absorptionsrms = 0.9%
n = 2.5 beams

1 See W03 by R. S. Craxton.



Angular-dependent pulse shaping and target shimming
are considered to achieve implosion symmetry

TC6223
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Improved-stability, high-gain designs
are considered for direct-drive ICF

• Direct drive offers the possibility of significantly higher gains
than indirect-drive ICF.

• New designs show significant improvements in shell stability
and target gain.

• Such designs implement adiabat shaping and foams wicked
with DT.

• The possibility of performing direct-drive ignition experiments
in NIF’s x-ray drive configuration (polar direct drive) is
currently being considered.

Summary/Conclusions


