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Bell–Plesset effects are formally
very simple but varied in their behavior

Summary

• The classical Rayleigh–Taylor problem has been modified for
arbitrary rates of compression and geometrical convergence in
a way that clarifies Bell–Plesset effects on the density and radius
scaling of perturbations and on stability criteria.

• Bell–Plesset effects are different for each of the pair of independent
perturbation solutions.

• In the opposite limits of fast and slow Rayleigh–Taylor growth, the
perturbation amplitudes scale in completely different ways.

• For fast Rayleigh–Taylor growth – the limit of interest to the
deceleration phase of ICF – the scaling is simplified.

• In this limit, spatial perturbations of the surface of a uniformity
compressing cylinder, or sphere, exhibit no explicit Bell–Plesset effects.
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Bell’s introduction to convergence and compression effects
based on a mass amplitude was the preferable approach

• Bell’s formulation (1951) uses mass amplitudes to obtain perturbation
equations for free surfaces (r1 = 0 or r2 = 0).

• Plesset (1954) treats only the spherical interface with no compression
with an arbitrary density jump, but he uses spatial displacement
amplitudes.

• Goncharov et al. (2000) and their Rayleigh–Taylor post-processor based
on the “sharp boundary model” includes Bell–Plesset effects.
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Bell–Plesset effects were added to the language
of the ICF community relatively recently
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Perturbation equations are best written
in terms of a mass amplitude

Incompressible planar approximation

Compressible spherical solution (i.e., Bell–Plesset*)

d2

dt2 Ak = g0
2 Ak

*G. I. Bell, Los Alamos National Laboratory, Report No. LA-1321 (1951).
M. S. Plesset, J. Appl. Phys. 25 (1), 96-98 (1954).
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Perturbation equations are very similar
among the three simple geometries

gR = R /R, g r = r / r
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The solution of constant mass amplitude occurs only
as one solution in the “accelerationless” limit

Incompressible shell Compressing core
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Compression and convergence complicate the time
dependence of perturbations of decelerating interfaces

I = incompressible shell
C = compressible sphere
P = incompressible planar
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Bell-Plesset effects appear as density-radius scaling factors
in the limits of fast and slow Rayleigh–Taylor growth
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I. The “accelerationless” limit of small                                      , the “coasting” phase:

• The second solutions are indistinguishable from unperturbed flow.

II. The large l or WKB limit,                                    , the “deceleration” phase:

• For uniform compression of a constant cylindrical or spherical mass,

       , showing no explicit Bell–Plesset effects.

• Bell–Plesset effects are not an instability and do not affect stability criteria.
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Bell–Plesset effects are formally
very simple but varied in their behavior

Summary/Conclusions

• The classical Rayleigh–Taylor problem has been modified for
arbitrary rates of compression and geometrical convergence in
a way that clarifies Bell–Plesset effects on the density and radius
scaling of perturbations and on stability criteria.

• Bell–Plesset effects are different for each of the pair of independent
perturbation solutions.

• In the opposite limits of fast and slow Rayleigh–Taylor growth, the
perturbation amplitudes scale in completely different ways.

• For fast Rayleigh–Taylor growth – the limit of interest to the
deceleration phase of ICF – the scaling is simplified.

• In this limit, spatial perturbations of the surface of a uniformity
compressing cylinder, or sphere, exhibit no explicit Bell–Plesset effects.


