Measurements of the Two-Plasmon-Decay Instability on OMEGA

Christian Stoeckl
University of Rochester
Laboratory for Laser Energetics

31st Annual Anomalous Absorption Conference
Sedona, AZ
3–8 June 2001
Contributors

R. E. Bahr
V. Yu. Glebov
J. A. Marozas
D. D. Meyerhofer
W. Seka
R. W. Short
B. Yaakobi
Two-plasmon-decay instability is the primary source of hot electrons in both planar and spherical experiments

- The $3\omega/2$ signature of the two-plasmon-decay instability correlates very well with the hard x-ray emission in both planar and spherical geometries.
- Smoothing by spectral dispersion (SSD) enhances the hard x-ray emission in spherical and long-scale-length planar experiments.
- Polarization smoothing (PS) using birefringent wedges lowers the hard x-ray emission.
- Experiments using targets of different diameters indicate that the overlapped intensity dominates the scaling of the hard x-ray emission and the $3\omega/2$ signature of the two-plasmon-decay instability.
Hot electrons can significantly reduce the target gain

- The effect of an 80-keV hot-electron tail was simulated using the fast-electron package in *LILAC*.
- About 4% of the energy absorbed into fast electrons couples into the DT-ice fuel layer.
The $3\omega/2$ signature of the two-plasmon-decay instability is produced by Thomson scattering.

Two-plasmon decay (primary decay process)

Self-Thomson scattering (secondary scattering process)
Four hard x-ray detectors using single-edge-type filters are used to measure the hot-electron temperature.
Planar-foil experiments use three sets of delayed beams, six of which are interaction beams...

Thick CH target

Angle to target normal

62° 48° 23°

Power

Time (ns)

0 1

3ω/2

Pick-up telescope

Spectrometer

Streak
The blue shifted peak is missing in the $3\omega/2$ spectrum in planar experiments.
The hard x-ray signals from the planar experiments show a trend of increased signal with SSD.
In spherical geometry, the overlapped intensity on target depends on the target diameter.

![Diagram of beam-intensity envelope and target](image)

- **Beam-intensity envelope**
- **Target**

Graphs:
- **Single-beam envelope**
 - Intensity vs. Radius (mm)
 - Intensity: 0.0 to 1.0
 - Radius: -1.0 to 1.0

- **Intensity on target**
 - Intensity (10^{14} W/cm^2) vs. Diameter (mm)
 - Intensity range: 0 to 10
 - Diameter range: 0.9 to 1.1

Data:
- Peak single-beam intensity
- Overlapped intensity (60 beams)
The $3\omega/2$ signal from spherical experiments shows the typical two-peak structure

- CH shell, 950-µm diam., 8×10^{14} W/cm2 overlapped, 1-ns square
$3\omega/2$ light correlates with hard x rays for square pulse

- CH shell, 950-μm diam., 8×10^{14} W/cm² overlapped, 1-ns square
Improvements in the single-beam nonuniformity by SSD or PS affect the hard x-ray emission for spherical targets

- CH shell, 950-\(\mu\)m diam., 1-ns square, varying single-beam intensity

\[
\text{Signal} = 0.013 \times \exp \left(\frac{I_{14}}{1.19} \right)
\]
The hard x-ray signal, temperature, and $3\omega/2$ signal correlate very well with the target radius for spherical targets.

- CH shell, $1.8 \times 10^{14} \text{ W/cm}^2$ single beam, 1-ns square
Changing the target diameter is equivalent to changing the laser power for spherical targets

- CH shell, $1.8 \times 10^{14} \text{ W/cm}^2$ single beam, 1-ns square

![Graph showing the relationship between signal and overlapped intensity. The equation is $\text{Signal} = 0.013 \times \exp (I_{14}/1.19)$, where I_{14} is the overlapped intensity in 10^{14} W/cm^2. The graph includes data points labeled HXRD2.]
Two-plasmon-decay instability is the primary source of hot electrons in both planar and spherical experiments

- The $3\omega/2$ signature of the two-plasmon-decay instability correlates very well with the hard x-ray emission in both planar and spherical geometries.

- Smoothing by spectral dispersion (SSD) enhances the hard x-ray emission in spherical and long-scale-length planar experiments.

- Polarization smoothing (PS) using birefringent wedges lowers the hard x-ray emission.

- Experiments using targets of different diameters indicate that the overlapped intensity dominates the scaling of the hard x-ray emission and the $3\omega/2$ signature of the two-plasmon-decay instability.