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A basic problem in plasma physics is the interaction and
energy loss of energetic charged particles in plasmas.1�4 This
problem has traditionally focused on ions (i.e., protons, alphas,
etc.), either in the context of heating and/or ignition in, for
example, inertial confinement fusion (ICF)3�6 or the use of
these particles for diagnosing implosion dynamics.7 More
recently, prompted in part by the concept of fast ignition for
ICF,8 scientists have begun considering energy deposition
from relativistic fast electrons in deuterium�tritium (DT) plas-
mas.8�13 Tabak et al.8 used, for example, the energy deposi-
tion of Berger and Seltzer,14 which is based on the continuous
slowing down of electrons in cold matter. This treatment,
though quite similar to electrons slowing in plasmas, does not
include the effects of scattering. Deutsch et al.9 addressed
this issue by considering the effects of scattering off the
background ions;16,17 they ignored scattering due to back-
ground electrons.

In another important context in ICF, researchers addressed
the issue of fuel preheat due to energetic electrons (~50 to
300 keV),5,18,19 the consequence of which is to elevate the
fuel adiabat to levels that would prohibit ignition. This article
shows that scattering effects could be significant for quantita-
tive evaluations of preheat.

The starting point for these calculations is the relativistic
elastic differential cross sections for electrons scattering off
fully ionized ions of charge Z (Refs. 20�22) and off the
neutralizing bath of electrons,21,23,24 which are approximated
as
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Stopping of Directed Energetic Electrons
in High-Temperature Hydrogenic Plasmas
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For a hydrogenic plasma (Z = 1) and for γ � 10, ℜ ~ 1,
indicating that the electron component is equally important. As
best we can tell, the electron-scattering component has been
largely ignored since it was typically assumed, usually justifi-
ably, that ion scattering dominates. This will not be the case,
however, for problems discussed here, for relativistic astro-
physical jets,25 or for many of the present high-energy laser�
plasma experiments26 for which Z ~ 1 and γ � 10.

To calculate the effects of multiple scattering, a Boltzmann-
like diffusion equation is used:27
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where f is the angular distribution function of the scattered
electrons, ni is the number density of plasma ions of charge Z,
x is the position where scattering occurs, and σ = σei + Zσee is
the total scattering cross section, where σ σei

ei= ( )∫ d d dΩ Ω
and σ σee

ee= ( )∫ d d dΩ Ω . Equation (4) is solved in cylindri-
cal coordinates with the assumption that the scattering is
azimuthally symmetric. The solution that satisfies the bound-
ary conditions is27,28
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where Pl (cosθ) is a Legendre polynomial. Using orthogonal-
ity and projecting the l = 1 term,
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where �cosθ�, a function of the residual electron energy, is a
measure of the mean deflection resulting from multiple scatter-
ing,29 and relates dE/ds to dE/dx through
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where dE/ds is the stopping power along the path while
dE/dx is the linear energy stopping power. In the above,

S E ds
dE

ds
dE

s

E

E

( ) = ′ = 



∫ ∫
−

0

1

0

, (8)

and

σ π
σ

θ θ θ
π

1
0

2 1E n
d

d
di( ) = 





−( )∫ Ω
cos sin , (9)

where σ1 is the diffusion cross section (or transport cross sec-
tion) that characterizes the loss of directed electron velocity
through scattering.2 Equations (1) and (2) are substituted into
Eq. (9), and, after a standard change of variables, the integra-
tions are taken from bmin

ei  or bmin
ee  to λD, where λD is the Debye

length,30 and b bmin min
ei ee( )  is the larger of b bquantum

ei
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are the impact parameters for 90° scattering of electrons off
ions (e→i) or electrons off electrons (e→e). Thus
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where the arguments of the Coulomb logarithm are
Λei

D
ei= λ bmin  and Λee

D
ee= λ bmin  (Ref. 29). Since these

Coulomb logarithms are used in this and later calculations,
they are shown in Fig. 98.33.
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Figure 98.33
The Coulomb logarithms for incident 1-MeV electrons interacting with a DT
plasma (ρ = 300 g/cm3; Te = 5 keV). For the background plasma, the Coulomb
logarithm lnΛp, relevant to plasma transport processes (e.g., electrical and
thermal conductivity), is about 7.

The stopping power in Eq. (6) consists of contributions
from binary interactions with plasma electrons and from plasma
oscillations. The binary contribution is32
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where the differential energy loss cross section is from Møller23
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and ε is the energy transfer in units of γ −( )1 0
2m c . The lower

integration limit reflects the minimum energy transfer that
occurs when an incident electron interacts with a plasma
electron at λD, i.e., ε γ λ γmin = −( )[ ]2 10

2 2r D . The upper limit
occurs for a head-on collision, for which εmax = 0.5.

The contribution from plasma oscillations, which reflects
the response of the plasma to impact parameters larger than
λD,31 is
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where relativistic effects are included. Consequently,
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Figure 98.34 illustrates this relationship [Eq. (6)], where the
incident electron (E0 = 1 MeV) continuously changes direction
as it loses energy. When �cosθ� equals one e-folding, θ ≈ °68
and E E0 0 1≈ . , at which point the incident electron has lost
memory of its initial direction.

We iterate upon this process, important for low-energy
electrons, until the electrons are thermalized with the back-
ground plasma, which has the cumulative effect of bending
the path of the electrons away from their initial direction.
Figure 98.35 illustrates the enhancement of dE/dx for scatter-
ing off ions and for scattering off ions plus electrons.
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Figure 98.34
The mean deflection angle �cosθ� is plotted against the fraction of the
residual energy in a DT plasma for e→i and for e→i + e scattering (1-MeV
electrons with ρ = 300 g/cm3; Te = 5 keV). When �cosθ� equals one e-folding,
corresponding to θ ≈ °68  and E E0 0 1≈ . , the incident electron has lost
memory of its initial direction.
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Stopping power for linear-energy transfer and continuous slowing down are
plotted as functions of the electron energy for incident 1-MeV electrons in a
DT plasma (ρ = 300 g/cm3; Te = 5 keV). Enhancement of dE/dx (solid line)
over dE/ds (dotted line) is a consequence of the effects of multiple scattering.
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This effect is further illustrated in Fig. 98.36, where the
corresponding set of curves for range (R) and penetration

Xp( ) with and without the electron scattering contributions
are shown for electrons with E0 = 0.1�10 MeV.
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where E0 is the initial energy; E1, E2.... correspond to the
electron energies at the first, second.... e-folding of �cosθ� (see
Fig. 98.34); R is the total path length the electron traverses as
it scatters about and eventually thermalizes; and Xp  is the
distance along the initial electron trajectory that it eventually
reaches. Contributions from electron and ion scattering are
shown in Fig. 98.36.

Three other points are worth noting: First, the temperature
and density dependence are weak, i.e., a factor-of-10 reduction
in either temperature or density results in only ~10% reduction
in the penetration. Second, as the initial electron energy de-
creases, the effects of scattering become more pronounced
[Fig. 98.36(c)]�an effect, very similar in nature, that is also
seen in the scattering of energetic electrons in metals.34 Third,
for a given electron energy, scattering effects decrease slightly
as the target plasma temperature decreases, i.e., the path of the
electron straightens slightly as the target plasma temperature
drops. For example, when the target plasma temperature changes
from 5.0 to 0.5 keV (ρ = 300 g/cm3), the ratio R Xp  is
reduced by ~5% for 1-MeV electrons.

By calculating of the penetration as a function of energy
loss, the energy deposition can be evaluated (Fig. 98.37). In
addition to the differences in total penetration with and without
scattering contributions, it is seen that the linear-energy trans-
fer increases near the end of its penetration (i.e., an effective
Bragg peak), an effect that is seen more weakly with just ion
scattering. Such differences may need to be considered in
quantitatively modeling the energy deposition of relativistic
electrons for fast ignition and for critically assessing ignition
requirements.35 It is also interesting, and a consequence of

E13054

0 5 10
1.00.0

0.0 0.5 1.0 0 5 10
0

R
/�X

p�

2.0

Electron energy (MeV)

rR
 (

g/
cm

2 )

0.5

Electron energy (MeV)

(a) (b) (c)

Continuous slowing down
Scattering by ions
Scattering by ions and electrons

0.4

0.3

0.2

0.1

Electron energy (MeV)

1.5

5

4

3

2

1

rR
 (

g/
cm

2 )

Figure 98.36
The range (dotted line) and penetration for (a) 0.1- to 1-MeV electrons and (b) 1- to 10-MeV electrons in a DT plasma (ρ = 300 g/cm3; Te = 5 keV). The penetration
is shown for scattering off ions and for scattering off ions plus electrons. A factor-of-10 reduction in either the temperature or density results in only ~10%
reduction in the penetration. (c) The ratio of range to penetration for 0.1- to 10-MeV electrons. As the initial electron energy decreases, the effects of multiple
scattering become more pronounced, and the penetration is further diminished with respect to the range.
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selecting 1-MeV electrons [Figs. 98.36 and 98.37], that
the effects of scattering reduce the penetration from 0.54 to
0.41 g/cm2; this latter value is close to the range of 3.5-MeV
alphas, 0.3 g/cm2, which is required for hot-spot ignition in a
10-keV plasma.3�6

Finally, in order to explore the importance of electron-on-
electron multiple scattering in a hydrogenic setting, and since
definitive stopping power experiments in plasmas are ex-
tremely difficult, we propose that experiments be undertaken
in which a monoenergetic electron beam, with energy between
0.1 and 1.0 MeV, scatters off thin layers of either D2 or H2
ice, where the thickness of the ice layer is between ~100 and
1000 µm, the appropriate thickness depending on the exact
electron energy. Although there are differences in the scatter-
ing calculations for cold, condensed hydrogenic matter and a
hydrogenic plasma, there is reason to believe that the relative
importance of the electron-to-electron and the electron-to-ion
multiple scattering terms will be approximately the same for
both states of matter.

Summary
The energy loss and penetration of energetic electrons into

a hydrogenic plasma has been analytically calculated, and the
effect of scattering off ions and electrons is treated from a
unified point of view. In general, scattering enhances the
electron linear-energy transfer along the initial electron direc-
tion and reduces the electron penetration. Energy deposition
increases near the end of its range. These results should have
relevance to �fast ignition� and to fuel preheat in inertial
confinement fusion, specifically to energy deposition calcula-
tions that critically assess quantitative ignition conditions.
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