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Introduction
Thermal transport plays an important role in direct-drive
inertial confinement fusion. The Spitzer�Härm heat flux1

qSH = �κSH∇T has been conventionally used in the direct-
drive inertial confinement fusion (ICF) hydrocodes. Here, κSH
is the Spitzer heat conductivity and T is the electron tempera-
ture. In the regions of the steep temperature gradients where
qSH exceeds a fraction f of the free-stream limit qFS = nTvT,
the Spitzer flux is replaced2 by fqFS, where n is the electron
density, vT T m=  is the electron thermal velocity, and f =
0.05 � 0.1 is the flux limiter. It has been known for more than
two decades3�5 that, in addition to the terms proportional to the
temperature gradients (thermal terms), the heat flux in laser-
produced plasmas contains ponderomotive terms that are due
to the gradients in the laser electric field. To our best knowl-
edge, no systematic analysis has been performed to address the
effect of such terms on the hydrodynamic flow in ICF plasmas.
As shown later, the ratio of the ponderomotive terms to the
thermal terms is proportional to R L LE T T E= ( ) ( )α v v 2

,
where vE LeE m= ω  is the electron quiver velocity, e is the
electric charge, E is the amplitude of the electric field, m is the
electron mass, ωL is the laser frequency, LT and LE are the
temperature and the electric field scale length, and α is a
constant. The ratio of the electron quiver velocity to the
thermal velocity is small for typical plasma parameters. In-
deed, v vE T I T( )2

150 4�  m
2

keV. ,λµ  where I15 is the laser
intensity in 1015 W/cm2, λµm is the laser wavelength in
microns, and TkeV is the electron temperature in keV. Using
I15 ~ 1 and T ~ 2 keV, we obtain v vE T( )2 0 02~ .  for λµm =
0.353 µm. The ratio R, however, can be of the order of unity
due to a large ratio L LT E .  Indeed, as the laser reaches the
turning point where the electron density equals nc cos2 θ, the
electric field decays toward the overdense portion of the shell
as6 E E~ ,max exp −( )2 3 3 2ζ  where n m ec e L= ω π2 24  is
the critical density, θ is the laser incidence angle,
ζ ω= ( )L n nL c z L2 3 ,  Ln ~ LT is the electron-density scale
length, and z is the coordinate along the density gradient.
Therefore, the electric-field scale length near the turning point
becomes L L L cE T L T~ .ω( )2 3  Substituting this estimate to
the ratio R and using LT ~ 10 µm and v vE T( )2 0 02~ .  gives
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R L cE T L T~ ~ .α ω αv v( ) ( )2 2 3 0 6 .  As will be shown later,
the coefficient α is numerically large and proportional to the
ion charge Z; this makes R larger than 1. This simple estimate
shows that the ponderomotive terms become comparable to the
thermal terms in the electron thermal flux near the turning
point. In addition, the p-polarization of the electric field
(polarization that has a field component directed along the
density gradient) tunnels through the overdense portion of the
shell and gives a resonance electric field at the critical surface.6

The gradient of such a field is proportional to the ratio ω νL ei ,
where νei is the electron�ion collision frequency at the critical
surface. Substituting typical direct-drive experiment param-
eters into an expression for the electron�ion collision fre-
quency at the critical surface, ν ωei keV

3 2    10  L Z T� 1 5 3. ,× −

shows a significant contribution of the ponderomotive terms to
the heat flux near the critical surface.

In this article, the ponderomotive transport coefficients
are derived. Such coefficients have been considered previ-
ously.3�5,7�9 Reference 7 developed a method of solving the
kinetic equation by separation of the electron distribution
function on the high-frequency component due to the laser
field and the low-frequency component of the time-averaged
plasma response. Using such a method, the laser fields� contri-
bution to the electron stress tensor was obtained. A similar
method was used in Ref. 3, where the importance of the
ponderomotive effects on the electron thermal conduction was
emphasized. P. Mora and R. Pellat4 and I. P. Shkarofsky5 have
evaluated the contributions of the laser fields into the heat and
momentum fluxes. As was pointed out in Ref. 8, by not,
however, consistently taking into account the contribution of
the electron�electron collisions�the transport coefficients in
their results contain wrong numerical factors. A consistent
analysis was performed in Ref. 8, where results were obtained
in the limit of large ion charge. Such a limit was relaxed in
Ref. 9. The latter reference, however, contains numerous
typographical errors, so the results will therefore be rederived
in this article. The effect of ponderomotive terms on the
hydrodynamic flow in direct-drive ICF experiments will be
discussed in detail in a forthcoming publication.
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Model
We consider a fully ionized plasma in a high-frequency

electromagnetic field:

ε ω ω= ( ) + ( )[ ]− ∗1

2
E Er t e r t ei t i tL L, , , (1)

β ω ω= ( ) + ( )[ ]− ∗1

2
B Br t e r t ei t i tL L, , , (2)

where E and B are slowly varying (with respect to ei tLω )
electric and magnetic fields and E* and B* are the complex
conjugate (c.c.) of E and B. The electron distribution function
f obeys the Boltzmann equation

∂ ∂ ∂ε β
t f f e

c
f

J f f J f

+ + + +
×









= [ ] + [ ]

v E
v

r p 

ee ei

0

, , (3)

where E0 is the low-frequency electric field. Here,

J f
fT

k
kj k j

j
ei ei[ ] = 


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−( )
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3
8

3
2π
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(4)

is the ion�electron collision operator,

ν
π

ei =
4 2

3

4

2 3
e nZ

m T

Λ

v
(5)

is the electron�ion collision frequency,

Z e n e ni i
i

i i
i

=∑ ∑2 (6)

is the average ion charge, ni is the ion number density, n is the
electron density, ei is the ion charge, m is the electron mass, Λ
is the Coulomb logarithm, vT T m= ,  and T is the electron
temperature. The sum in Z  is taken over all ion species in the
plasma. The electron�electron collision integral is taken in
Landau form

J f f
e

m

d

f f

k

kj k j

j j

ee

 

 

,

.
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v v

v v (7)

Next, following Ref. 7, we separate the electron distribution
function on the slowly varying part f0 and the high-frequency
component f1:

f f f e f ei t i tL L= + +( )− ∗
0 1 1

1

2
ω ω . (8)

Substituting Eqs. (1), (2), and (8) into Eq. (3) and collecting the
terms with equal powers of ei tLω , we obtain

∂ ω ∂ ∂

∂
ω

∂

t L

L

f i f f e f

e f
ie

f

J f f J f f J f

1 1 1 0 1

0 0

0 1 1 0 1

− + +

+ − × ∇ ×( )[ ]

= [ ] + [ ] + [ ]

v E

E v E

r p

p p  

ee ee ei, , , (9)

∂ ∂ ∂

∂
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e
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,

, . (10)

Then, to relate f1 with f0, we assume that the laser frequency
is high enough so f1 can be expanded in series of
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ωL f f f− ( ) ( )= + + ⋅⋅⋅1
1 1

1
1

2: ,  where f f L1
2

1
1 1( ) ( ) <<~ .ν ωei  Sub-

stituting the latter expansion into Eq. (9) gives

f
ie

f
L

1
1

0
( ) = −

ω
∂E p , (11)

f
e

f J f
L

t1
2

2 0 0
( ) = − +( ) − [ ]{ }

ω
∂ ∂ ∂ ∂v E Er p pei . (12)

To eliminate f1 from Eq. (10) for the low-frequency compo-
nent of the distribution function, we substitute Eqs. (11) and
(12) into Eq. (10). The result takes the form8

∂ ∂ ∂
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
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ei ee , . (13)

Equation (13) is solved assuming a small deviation of the
electron distribution function f0 from Maxwellian fM:

f f t0 1= + ( )[ ]M ψ v p, , , (14)

where ψ << 1.  The kinetic equation for ψ is obtained by
substituting the expansion (14) into Eq. (13) and replacing the
time derivatives ∂t fM using the transport conservation equa-
tions. These equations, according to the standard procedure,10

are obtained by multiplying the kinetic equations by (v � v0)k

with k = 0, 1, 2,... and integrating the latter in the velocity
space. Here,

v v v v v0 0
1

= + ∫∫( )
ρ

d m f d m fi i i i (15)

is the mass velocity, ρ = nm + nimi � nimi is the mass density,
mi is the ion mass, vi is the ion velocity, and fi is the ion
distribution function. When k = 0, the described procedure
yields the mass conservation equation; k = 1 and k = 2 give the
momentum and energy conservation equations, respectively.
Omitting lengthy algebraic manipulations we report the final
result:8

∂tn n n+∇( ) +∇( ) =v V0 0, (16)
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Here we use the standard definitions

n d f n d f e= ∫ −( )∫ =v V v v v j0 0 0, ,   = (19)

q v v v v v= −( )∫ −( )m
d f

2 0 0
2

0, (20)

σ δkj k j e kjm d f p= ∫ −( ) −( ) −v v v v v0 0 0 , (21)

where Ti is the ion temperature, n is the electron density, j is
the current density, q is the heat flux, σkj is the stress tensor, pe
and pi are the electron and ion pressures, vE LeE m= ω ,  and
ρe = en + eini is the charge density. To simplify the derivation
of the transport coefficients, we assume v0 = 0 and neglect
terms of the order of m mi .  Next, the equation for the correc-
tion ψ to the Maxwellian distribution function is derived by
substituting Eq. (14) into Eq. (13) and using the conservation
equations (16)�(18). The resulting equation takes the form8
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where x T= ( )v v2 22 ,
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Next, we solve Eq. (22) assuming that the electron quiver
velocity is much smaller than the electron thermal velocity,
v vE T << 1, and ordering ∇T T E T~ .νeiv v2 3  The function ψ
is expanded as ψ = ψ1 + ψ2 + �, where ψ2 <<  ψ1. The first
approximation ψ1 is obtained by keeping only the terms of the
order of v TT T∇ ( )νei . The second-order correction ψ2 is
derived by retaining the first derivative of the electric field and
the second derivative of the electron temperature and density.

First-Order Approximation
Retaining the first spatial derivatives in temperature and

density and also terms proportional to v vE T
2 2 ,  Eq. (22) yields
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We look for a solution of Eq. (27) in the form
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Using definitions (19)�(21), the current density, heat flux, and
stress tensor in the first approximation become
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where λ νe T= v ei  is the electron mean-free path. The nu-
merical coefficients in Eqs. (29)�(31) have the forms
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Equations (29)�(31) show that the electric current and the heat
flux in the first approximation are proportional to the gradients
in temperature and pressure.1,10,11 The stress tensor, on the
other hand, depends on the laser electric field.3,7 Even though
the functions Φ11 and Φ22 do not enter into the first-order heat
flux, they contribute to the heat flux in the second approxima-
tion. Thus, we need to find all four functions Φ11�14. The
general form of the solution ψ1 [Eq. (28)] can be separated on
the following three types of functions: type I depends only on
the velocity modulus ψ1

I( ) = ( )Φ x ; type II is proportional to the
velocity vector and velocity modulus ψ1

II( ) = ( )A xj jv Φ ;  and
type III depends on the velocity tensor and velocity modulus
ψ1

2 2III( ) = ( ) ( ) ( )v vij E ij
xΦ , where Ai is the vector proportional

to the temperature, pressure gradients, or the electric field E0.
According to such a classification, the governing equations for
the functions of each type become
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where φ(x) is defined by the right-hand side of Eq. (27). Since
the ion�electron collision operator has a very simple form, it
is straightforward to calculate J jei v[ ] and J ijei v2( )[ ]  using
Eq. (23):
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The electron�electron operator is more complicated, and the
evaluation of δJ xee Φ( )[ ],  δJ xjee v Φ( )[ ],  and δJ ijee v2( )[ ]Φ
requires lengthy algebra. Below is a detailed calculation of
δJ xee Φ( )[ ]. The integral part in the electron�electron collision
operator can be rewritten as
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where y = cos θ and θ is the angle between v and v�. Integra-
tion over the angles gives
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Substituting Eq. (42) into Eq. (41) yields
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Thus, the electron�electron collision integral reduces to
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The next step is to substitute Eq. (45) into Eq. (35) and solve
the latter for Φ. To simplify the integration, the right-hand side
of Eq. (35) can be rewritten in the form

φ ∂
φ

x
f k f

x

xk
( ) =

( )









1
3 2

M
Mv v . (46)

Then, integrating Eq. (35) once, the following integro-differ-
ential equation is obtained:

φ
ν

= ∑( )ei

Z
x , (47)

where function φ  is related to φ by integrating Eq. (46),

φ φ= ′ ′( ) ′∫ − ′
∞

e
dx x x e

x
xx

2
. (48)

To solve Eq. (47) we take the x derivative of both sides of
Eq. (47). This gives

2

3

3

2

Z
x x dx e xx

xν
φ γ

ei
′ = ′′ 




− ′ ′′ ′( )∫ − ′∞

Φ Φ, , (49)

where γ α α, x x e dxxx( ) = ′ ′∫ − − ′1
0

 is the incomplete gamma
function. Introducing a new function g x dx x e x

x
( ) = ′ ′′( )∫ − ′∞

Φ ,
Eq. (49) becomes

g x
Z

x
dx x e

C

x
x

x

( ) = −
( )

′ ′ ′( ) +
( )

⌠
⌡


− ′2

3 3 2 3 20ν γ
φ

γei , ,
, (50)

where C is the integration constant. Thus, the function Φ(x)
can be expressed as a multiple integral of φ :

Φ x C C x dx dx e g xx( ) = + − ′∫ ′′ ′ ′′( )∫ ′′
1 2 . (51)

Next, we report the equations corresponding to the function of
the second and third types [Eqs. (36) and (37), respectively].
Equation (36) reduces to

x
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Equation (37) for the function of the third type becomes
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Φ
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The heat transport coefficients in the first approximation
depend on functions Φ13 and Φ14, which belong to the function
of the second type and can be found by solving Eq. (52) with

φ νx x( ) = −





5

2
, ,   for   = 13 eiΦ Φ (54)

φ νx( ) = =1, .   for   14 eiΦ Φ (55)

To solve the integro-differental equation (52), function Φ(x)
is traditionally expanded10,11 in Laguerre polynomials12

Φ x A n Ln n( ) = ∑ ( ) 3 2.  As proposed in Ref. 9, it is more conve-
nient to use a more-generalized expansion in terms of Laguerre
polynomials L xn

α ( ).  The choice of these polynomials comes
from their orthogonal properties

e x L x L x dx

m n

n n m n n

x
m n

−∞ ( ) ( )∫

=
≠

+ +( ) = − =





α α α

α α

0

0

1 1 0

                        if 

!   if  >     1,  2,...Γ , , , . (56)

Evaluation of the integrals in Eqs. (32) and (33) becomes
particularly simple if

Φ13 14
3 2

( )
+= ( )∑x A n Ln

n

β β . (57)

Index β is determined by matching the polynomial expansion
(57) with the exact solution of Φ in the limit of Z →∞.
Calculations show that such matching speeds up the conver-
gence of the transport coefficients with the number of polyno-
mials in expansion (57). Taking the limit Z →∞  in Eq. (52)
yields

Φ Z x→∞ = −
4

3
3 2

πν
φ

ei
. (58)

Then, the choice β = 3/2�k with k = 0, 1, 2,� will satisfy the
requirement of matching Eq. (57) with the exact solution (58).
The parameter k is determined by minimizing the number of
terms in the polynomial expansion (1) to match the exact
solution for Z →∞  and (2) to reach the desired accuracy of
the transport coefficients for Z ~ .1  Calculations show that for
the case of functions Φ13 and Φ14, β = 1/2 satisfies such a
minimization criteria [it takes five terms in Eq. (57) to obtain
the transport coefficients with 1% accuracy]. Therefore, the
expansion becomes

Φ13 14 13 14
2

( ) ( )= ( )∑x A n Ln
n

 . (59)

Multiplying Eq. (52) by x e L xx
s

3 2 − ( )α  with s = 0, 1, 2,�,
N�1 [where N is the number of polynomials in the expansion
(57)] and integrating the latter in x from 0 until ∞, we obtain
the system of N algebraic equations. Figure 98.4 shows a
dependence of the coefficients α j

T
1 and αq

T
1  on the number of

polynomials in the expansion (57) with β = �1/2, β = 1/2, and
β = 3/2, respectively. Observe that the coefficients converge
faster with β = 1/2.

Next, we derive the numerical coefficient ασ
E  of the stress

tensor σ ij
1( ). This requires that Eq. (53) be solved with Φ(x) =

Φ11 and

φ
ν π
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x, , . (60)
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Similar to the previously considered case, we expand function
Φ11 in Laguerre polynomials. To express ασ

E  through just one
coefficient in such an expansion, we take

Φ11
5 21 1= ( ) +∑x B n Ln

n

β β . (61)

The choice of the power index β1 comes from the condition of
matching expansion (61) with the exact solution in the limit of
Z →∞. Neglecting terms proportional to 1 Z  in Eqs. (53)
and (60) gives

Φ11
1

8

1

12
x

xZ( ) = +
→∞

. (62)

It is easy to see that the values β1 = �1, �2, �3,� satisfy our
requirement. Calculations show that expansion (61) with
β1 = �1 has the fastest convergence with the number of poly-
nomials. Table 98.II shows a summary of coefficients ασ

E  for
a different ion charge Z . Observe that the stress tensor has a
very weak dependence on Z  (3% variation in ασ

E  from Z = 1
to Z = ∞). One more function remains to be determined in the
first approximation: the correction Φ12 to the symmetric part
of the distribution function. This function belongs to the first
type and can be found in the integral form using Eq. (51) with

φ
π ν

x x
x

( ) = − +










3

2

3

4 3
ei (63)

Table 98.II:  Transport coefficients in the first approximation.

Z 1 2 3 4 5 10 30 80 ∞

α j
T
1 –1.39 –2.1 –2.57 –2.91 –3.16 –3.87 –4.59 –4.89 –5.09

αq
T
1 –7.66 –12.11 –15.19 –17.46 –19.23 –24.31 –29.86 –32.27 –33.95

α j
T
2 –1.99 –2.34 –2.54 –2.67 –2.77 –3.01 –3.25 –3.34 –3.39

αq
T

2 –6.35 –7.93 –8.90 –9.57 –10.07 –11.40 –12.70 –13.23 –13.58

ασ
E 1.029 1.027 1.023 1.020 1.017 1.010 1.004 1.002 1.000

Figure 98.4
Coefficients α j

T
1 and αq

T
1  as functions of the number of polynomials in the expansion (57). The results correspond to β = �1/2 (dashed line), β = 1/2 (solid

line), and β = 3/2 (dots).
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and Φ = Φ12. The integration gives8

Φ12 2 2 2
1

12 3 2
x Z C C x

dt t x t

t

x

( ) = − + −
−( )

( )[ ]
⌠

⌡














�
,

,
π

γ
(64)

where C2 and �C2 are determined from the condition of zero
contribution of Φ12 to the electron density and temperature,

dxe x x dxe x xx x−∞ −∞( )∫ = ( )∫ =Φ Φ120
3 2

120
0 0, .   (65)

Conditions (65) yield C2 = 0.721 and �C2 = 0.454. Note two
misprints in Φ12 reported in Ref. 8 [the different sign in front
of the integral and (x � t) instead of (1 � t) inside the integral].
The correction to the symmetric part in the distribution func-
tion comes mainly from balancing the inverse bremsstrahlung
heating π νx E Tei 3 2 2v v( )  with the electron�electron colli-
sions δJee. Since δ νJ Zee ei~ ,  function Φ12 becomes pro-
portional to the average ion charge Z ,  as shown in Eq. (64).
As emphasized in Ref. 8, the symmetric correction Φ12
gives the dominant contribution to the heat flux in the second-
order approximation.

Second-Order Approximation
Correction ψ2 to the distribution function in the second

approximation satisfies the following equation:8
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A general solution of Eq. (66) can be written as
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The electric current and the heat flux in the second order take
the form
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Coefficients α j q
E
( )  are calculated using the following rela-

tions:

α
πj

E xdxx e x1 2 3
3 2

21 2 50

4

3, , ,( )
−

( )
∞

= ( )∫ Φ (70)

α
πq

E xdxx e x1 2 3
5 2

21 2 50

4

3, , .( )
−

( )
∞

= ( )∫ Φ (71)

Next, we find functions Φ21, Φ22, and Φ25. These functions are
of the second type; therefore, to obtain them we solve Eq. (52)
with

φ ν= −( )x

10
8 111Φ Φ Φ, ,   for = 21 ei (72)

φ ν= + +( ) + −Φ Φ Φ Φ Φ12 13 14
1

3

1

2 6

x
, ,   for = 22 ei (73)

φ ν= Φ Φ Φ14, .   for = 25 ei (74)

Following the method described in the previous section, func-
tions Φ21, Φ22, and Φ25 are expanded in series (57). The exact
solution for Φ21 as Z →∞  becomes

Φ21

3 22

15
1

3Z
x x

→∞
= − −



π

; (75)

thus β takes the values β = 3/2�k with k = 0, 1, 2,�. The fastest
convergence of the coefficients α j

E
1 and αq

E
1 is obtained with

β = 1/2. A summary of α j
E
1 and αq

E
1 for different ion charge Z

is given in Table 98.III. Next, we find the function Φ22. The
exact matching of the polynomial expansion (57) with the
exact solution Φ22 for Z →∞ ,

Φ Φ22

3 2

12
4

3Z
x

→∞
= −

π
, (76)

cannot be done since Φ12 does not have a polynomial struc-
ture [see Eq. (64)]. It is easy to show, however, that
Φ12 0 1x x→( ) ~  and Φ12

5 2x x→∞( ) ~ . Therefore, the
expansion of Φ22 with β = 1 reproduces the asymptotic limits
for x << 1 and x >> 1. Taking β = 1 and keeping N = 5 terms in
expansion (57) gives values of α j

E
2  and αq

E
2, which are

reported in Table 98.III. Observe that these coefficients be-
come quite large for Z >> 1.  To find the remaining coefficients
in the heat flux and electric current, we solve the equation for
the function Φ25. In the limit of Z →∞ , the function Φ25
becomes

Φ Φ25 14

3 2
34

3

16

9Z Z
x

x
→∞ →∞

= − =
π π

; (77)

thus, β = 3, 2, 1� matches the polynomial expansion (57)
with the exact solution in the limit of Z →∞. Calculations
show that β = 1 requires a minimum number of polynomials
in expansion (57) to achieve the desired accuracy. The values
of α j

E
3  and αq

E
3 are summarized in Table 98.III. Next, we

Table 98.III:  Transport coefficients in the second approximation.

Z 1 2 3 4 5 10 30 80 ∞

α j
E
1 –0.03 –0.01 0.00 0.02 0.03 0.06 0.09 0.10 0.11

αq
E
1 –0.03 0.07 0.16 0.23 0.30 0.49 0.73 0.83 0.90

α j
E
2 4.05 8.54 13.07 17.51 21.86 42.30 116.3 Z  3.66 Z  3.48

αq
E
2 19.7 48.3 80.0 113.0 146.6 314.1 960.9 Z  31.7 Z  31.3

α j
E
3 4.69 7.21 9.07 10.51 11.67 15.15 19.18 21.00 22.28

αq
E

3 16.77 28.75 38.45 46.39 52.99 74.05 100.6 113.3 122.5
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combine the electric current and the thermal flux in the first and
second approximations. The result is

j
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Imposing a condition of zero current j = 0 and also assuming
tE j

E
j
Tν α αei << 3 2  (where tE is the time scale of E0 variation)

define the slowly varying component of the electric field E0,
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Substituting E0 from Eq. (80) into Eq. (79) gives the heat flux
in laser-produced plasmas,
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where

β α α α αT
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can be represented with the following fitting formulas:
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In addition, the coefficients in the electric field E0 can be fitted
as follows:
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Coefficients βT and α αj
T

j
T

1 2  agree with previously published
results.1,11,13

Next, we discuss the validity of the derived transport
coefficients. As shown earlier, the main contribution to the
second-order heat flux comes from the correction Φ12 to the
symmetric part of the distribution function. The function Φ12
is given in the integral form by Eq. (64) and has the following
asymptotic behavior for small and large velocities:
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Φ12 0
4

x
Z

x
→( ) = −

π
, (85)

Φ12
5 24

45
x Z x→∞( ) = −

π
. (86)

The validity condition of the Chapman�Enskog method10

Φ12
2 2 1v vE T <<  breaks down for

x Z E
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< 2
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416

π v

v
(87)

and
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E
>









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3
2 5

4 5
v
v

. (88)

According to Eq. (71), the main contribution to the heat flux
comes from the superthermal electrons [which correspond to
the maximum in the function x5/2e−xΦ(x)]. Therefore, the
limit (87) imposes no restrictions on the applicability of the
derived results. The electron distribution function for the
subthermal electrons, nevertheless, is different from the limit
(85). As derived in Refs. 14 and 15, the inverse bremsstrah-
lung heating modifies the distribution of the cold electrons to
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 exp , (89)

where V ZL E T= ( )π 8 2 1 3
 v v  is the Langdon velocity.16 To

check the limitations due to the second condition (88), we find
that the maximum of

x e x e x x ex x x5 2
22

5 2 3 2
12

13 2− − −Φ Φ~ ~

corresponds to xmax � 13/2. This limits the applicability of the
Chapman method to v vE T Z2 2 0 2< . . Even though the modu-
lus of Φ12 becomes larger than unity for large x [see Eq. (88)],
we can show that

f f xE
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2 12
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



v

v
Φ (90)

is a good approximation to the symmetric part of the distribu-
tion function even for x → ∞. For such a purpose, we find the
asymptotic behavior of the function that satisfies the following
equation:

∂t f J f f0 0 0= ( )ee , . (91)

We look for a solution of Eq. (91) in the form f0 = AeΨ, where
Ψ = ( ) ( )F gTv v2 2  and A is a normalization constant. The tem-
perature dependence is combined in function F, and velocity
dependence is in g; then, the time derivative of f0 becomes

∂
∂ ν

t T
t Ef f F g
T

T
f F g0 0

2
0

2
= ′ = ′v

v ei

3
, (92)

where we substituted ∂ νt E TT T = ( )v v2 2 3ei  due to the in-
verse bremsstrahlung heating. The electron�electron collision
integral reduces in this case to
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v , (93)
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In the limit of v → ∞, I becomes

I g d f g n T  � ′ ( ) ′ ′∫ ′( ) = ′ ( )∞v v v v v v2 4
0 0

2 24 3π ,

and Eq. (91) takes the form
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v π
. (95)
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Next, we make an assumption ′′ << ′g g 2, which will be veri-
fied a posteriori. In this case the solution of Eq. (95) becomes

g
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F

Z E

T

=
′2

225 2
5

2

2

5π
v

v

v
. (96)

Observe that the condition ′′ << ′g g 2  is satisfied in the limit of
large velocity. The function g, by definition, does not depend
on temperature; this yields for F

′
= ( ) =

F

F
C F

C
T

T
2

2 5 2

7v
v

,
�

,   (97)

where C and �C  are constants. The distribution function f0
depends on the product F gTv v2 2( ) ( ),  which, according to
Eqs. (96) and (97), takes the form

F g
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v v
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225 2
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π
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Using Eq. (98), the asymptotic limit of the symmetrical part of
the distribution function reduces to

f x Z xE
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The latter equation must be compared to f0
int  in the limit

x → ∞ [see Eq. (90)],
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5 21 0 05int    exp    >>( ) −









~ . .

v

v
(100)

Thus, we can conclude that the function in the form (90) is a
good approximation to the distribution function for thermal
and superthermal electrons.

In conclusion, we have derived the transport coefficients,
including the thermal and ponderomotive terms for an arbi-
trary ion charge. The modification of the thermal transport due
to the ponderomotive effects near the critical surface and laser
turning point will be discussed in a forthcoming publication.
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