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4.B Generation of Pulses Shorter than 70 fsec 
with a Synchronously Pumped CW Dye 
Laser 

Recently, Fork eta/.' have reported on the generation of stable 90 fsec 
(10-l5 seconds) pulses, by colliding pulse mode-locking with a CW 
pumped passively mode-locked dye laser. At LLE we have succeeded in 
generating laser pulses less than 70 fsec in duration with a synchron- 
ously pumped dye laser using a solution of rhodamine 6G and DQOCI in 
ethylene glycol. The spectral width of these laser pulses, larger than 100 
A, suggests afrequency chirp in the pulses or a limitation in our abilty to 
measure the real pulse width due to a restricted phase matching band- 
width and the converging beam geometry of our background-free auto- 
correlator. Minimum pulse widths are obtained at 61 5 nm when the laser 
reaches its optimum output power with an overall efficiency of 10%. 
The laser is somewhat tunable over a 590-615 nm range with an in- 
crease in pulse width. Unlike regular synchronously pumped dye lasers, 
no satellite pulses or coherence spikes are observed. Furthermore, be- 
cause of the excellent synchronization of the short pulse with the pump 
pulses, this pulse can readily be amplified by a synchronously pumped 
dye amplifier s y ~ t e m . ~  

A frequency doubled CW modelocked Nd:YAG laser is used to syn- 
chronously pump a four mirror-dye laser as shown in Fig. 21. A Z-cavity 
configuration was used to make provision for two outputs and was not 
essential for the generation of short pulses. A 200 pm thick jet is used 
with 5 cm focal length folding mirrors. It is noteworthy that the jet does 
not occupy any strategic position in the cavity. The dye laser is a mixture 
of 5x104M rhodamine 6G and 3x105M DQOCI. An output power of 30mW 
is obtained for 300mW pump power. A 2 pm thick uncoated pellicle 
tunes the laser wavelength without restricting the laser bandwidth. The 
pulse width measurements are performed using a background-free 
autocorrelator and the integrated laser spectrum is monitored with a 114 

Frequency Doubled 
CW Mode-Locked 

Fig. 2 1 
Experimental set-up: a frequency-doubled 
CW mode-locked Nd:YAG laser pumps a 
dye mixture of rhodamine 6G and DQOClin 
ethylene glycol in a 4-mirror cavity. 
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meter monochromator on an optical multichannel analyzer. Minimum 
pulse widths are achieved at 615 nm when the dye laser cavity length is 
carefully tuned to the length of the Nd:YAG laser cavity. To minimize the 
cavity length fluctuation, the two lasers are mounted on super invar 
slabs. The DQOCI3 dye in ethylene glycol is remarkably well suited as a 
saturable absorber because its absorption band matches the rhoda- 
mine 6G emission band, leading to a large intensity discrimination and 
maximum wavelength tuning range. The dye lifetime hasalso been mea- 
sured to be very short. Time-delay fluorimetry using a jitter-free streak4 
camera has shown that the DQOCl l l e  fluorescence time is equal to or 
less than 3 psec. When DQOCl is replaced by DODCI, longer pulses, 
around 200 fsec, are observed. 

Figure 22 shows a typical autocorrelation trace suggesting a real 
pulse width of slightly less than 70 fsec for a hyperbolic secant pulse, 
which corresponds to a laser spectrum of 60 A FWHM. The integrated 
spectral width is over 120 A and suggests a restricted correlator band- 
width or a frequency chirp. This issue should be resolved with the use of 
KDP crystals less than 100 pm in thickness, working at a low conver- 
gence angle. The nonlinear crystal used presently in this work is 1 mm 
thickand exhibits acrossover length of 100pm forconverging beams. In 
addition to the crystal thickness which introduces a temporal broad- 
ening due to the phase matching bandwidth of the nonlinear crystal, a 
large waist size could lead to a significant temporal spread. For in- 
stance, a beam size of 50 pm at a 10 degree angle of convergence on the 
crystal, leads to a temporal spread of 30 fsec. 

Fig. 22 
Autocorrelation trace of the optical pulse. 
The scale has been established assuming 
a hyperbolic secant pulse. 

In a test through dispersive media such as BK7 glass, we found that 
pulses starting from a different initial pulse width can be stretched or 
compressed according to the central frequency of the laser, suggesting 
a negative or positive frequency chirp across the frequency tuning 
range. The frequency chirp variation could stem from the interplay be- 
tween the normal and anomalous dispersions in the solvent, rhodamine 
6G, and DQOCl dye mixture. At frequencies corresponding to the mini- 
mum pulse width the use of dispersive glass stretches the optical pulse 
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and seems to indicate a positive frequency chirp. The use of a grating 
pair outside the cavity, in an arrangement demonstrated by T r e a ~ y , ~  
should help to compress the laser pulse width towards its Fourier 
transform limit of 30 fsec. Also, dispersion-free cavities could be built 
with a judicious choice of auxiliary dye molecules or metal vapors6 work- 
ing near their absorption line. 

In conclusion, less than 70 fsec pulses have been generated with a 
synchronously pumped dye laser using a mixture of rhodamine 6G and 
DQOCI. The laser exhibits maximum stability and a maximum output 
power at minimum pulse width, reflecting the dramatic effect of the sat- 
urable absorber. The large laser spectrum and evidence of frequency 
chirp indicate that shorter pulses could be obtained in a dispersion-free 
cavity. The availability of this system at LLE will enable researchers to 
investigate physical processes occurring in a variety of material and 
biological systems in the 0.1 psec to 1.0 psec time domain. 
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