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An interface between two fluids subject to an external force
pointing from the heavier to the lighter fluid is hydrodynami-
cally unstable1 [Rayleigh–Taylor (RT) instability]. This insta-
bility plays an important role in astrophysics and inertial
confinement fusion.2 In the limit of small perturbation ampli-
tudes h (kh << 1, where k is the perturbation wave number), the
perturbations grow exponentially1 h ~ h0eg t with the growth
rate g = A kgT , where AT h l h l= -( ) +( )r r r r  is the
Atwood number, rh and rl are the densities of heavier and
lighter fluids, respectively, g is the interface acceleration, and
h0 is the initial amplitude. As the amplitude becomes large
enough (kh ~ 1), the interface can be divided into the spikes of
the heavier fluid penetrating into the lighter fluid and bubbles
of the lighter fluid rising into the heavier fluid. The exponential
growth of the bubble amplitude changes to the linear-in-time
growth3–8 h ~ Ubt, where Ub is the bubble velocity. Such a
transition is commonly referred to as a “nonlinear saturation,”
although, strictly speaking, only the bubble velocity saturates,
not the amplitude. To describe the evolution of the perturbation
after the saturation, two analytical approaches have been
proposed in the past.3–8 The weakly nonlinear theories5 (up to
the third-order accuracy in kh) capture only the initial slowing
down of the exponential growth. The other approach uses an
expansion of the perturbation amplitudes and conservation
equations near the tip of the bubble3,4,7,8 (or spike8) up to the
second or higher order in the transverse coordinate. In the past,
the second approach has been applied only to the fluid–vacuum
interfaces (AT = 1)3,4,6–8 and has been shown to be in good
agreement with numerical simulations and experimental data.
In this article, the Layzer’s theory will be extended to include
finite density of the lighter fluid (AT £ 1). We also report an
exact solution of conservation equations (valid at the tip of the
bubble) in the form of a convergent Fourier series.

First, we consider two irrotational, incompressible, inviscid
fluids in two-dimensional (2-D) geometry. The fluids are
subject to an external acceleration g pointing from the heavier
to the lighter fluid. The y axis is chosen in the direction of the
density gradient. The velocity potential f in the absence of
viscosity and thermal conduction obeys the Laplace equation
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In addition, the function f must satisfy the following jump
conditions at the fluid interface y = h(x,t):
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where Q Q Qh l[ ][ ] = =  (superscripts h and l denote the heavy-
and light-fluid variables, respectively) and f(t) is an arbitrary
function of time. Equations (2) and (3) are derived from the
mass-conservation equation and continuity condition for the
velocity component normal to the fluid interface, and Eq. (4)
is the Bernoulli’s equation. Following Ref. 4, we expand Eqs.
(2)–(4) and the interface amplitude h near the tip of the bubble
�localized at the point x y t, , ,{ } = ( ){ }0 0h � to the second order
in x, h = h0(t) + h2(t)x2. The function h2(t) is related to the
bubble curvature R as R = -1/(2h2). To satisfy boundary
conditions (2)–(4) (six equations), we need six unknowns.
Thus, in addition to the functions h0(t), h2(t), and f(t), the
velocity potential must contain three unknowns. We write the
velocity potential near the bubble tip in the following form:

f hh k y
a t kx e= ( ) ( ) - -( )

1
0cos , (5)

f hl k y
b t kx e b t y= ( ) ( ) + ( )-( )

1 2
0cos . (6)

The form of the light-fluid potential [Eq. (6)] will be verified
later using the results of numerical simulations. Substituting
Eqs. (5) and (6) into the boundary conditions (2)–(4) and
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expanding the latter near the bubble tip gives
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Equation (7) can be integrated directly. The result, assuming
initial sinusoidal perturbation with amplitude h0(0), takes the
form
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Furthermore, substituting Eq. (9) into Eq. (8), the latter can be
integrated to give an analytic expression for the bubble veloc-
ity. This expression is very lengthy, however, and will be
reported elsewhere. In practice, one can easily calculate the
bubble amplitude by solving the system (7)–(8) using, for
example, the Mathematica software package.9 Next, we ob-
tained an asymptotic solution for the bubble velocity by taking
the limit of t Æ � in Eqs. (9) and (8). This gives
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The last equation agrees with the prediction of the drag–buoy-
ancy model.6 Solution of Eq. (8) provides a continuous bubble
evolution from the linear to the nonlinear regime, while the
drag–buoyancy model calculates only the asymptotic behavior.

Next, we verify the choice of the velocity potential in the
light fluid [Eq. (6)] by comparing the velocity profiles obtained
from Eq. (6) and full numerical simulation. For such purpose,
we first calculate the coefficients b1 and b2 as functions of time:
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Since h2 6t kÆ�( ) = - , then b1 0Æ  and b2 0Æḣ . Then,
substituting Eq. (11) into the definition of the light-fluid
velocity,

vx
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b k kx e= - ( ) -( )
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0sin
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and
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1 2

0cos ,
h

we find that asymptotically, the light-fluid velocity component
parallel to the acceleration becomes flat near the tip of the
bubble (no x or y dependence), and the transverse velocity
component in that region goes to zero. To confirm this result,
we performed a 2-D simulation using an incompressible,
inviscid Eulerian code. Figure 89.7 shows the velocity profiles
(vx and vy) at two different times, calculated using results of
simulations for the fluid interface with AT = 0.4 and the initial
amplitude of velocity perturbation v0 0 01= . gl , where l is
the perturbation wavelength. The vertical lines show the inter-
face between the heavier and lighter fluids (the heavier fluid is
on the right side of the lines). Velocity vy is plotted at the
position of the bubble center (x = 0), and the transverse velocity
vx is plotted at x = 0.02 l [vx (x = 0) = 0 at all times]. When the

Figure 89.7
Velocity profiles at two different times calculated using results of a 2-D
simulation. Dashed lines represent profiles in the linear regime, and solid
lines correspond to velocities in the nonlinear regime.
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perturbations are in the linear regime (kh0 << 1), the velocity
decays exponentially from the interface toward the lighter and
heavier fluids (dashed lines). As the bubble amplitude be-
comes nonlinear (kh0 > 1), the longitudinal velocity vy in the
light fluid flattens out near the bubble tip and the transverse
velocity goes to zero (solid lines), in agreement with the results
of Eq. (11).

Applying the model to the Richtmyer–Meshkov (RM)
instability, we take the limit of g Æ 0 in Eq. (8). The asymptotic
bubble velocity in this case becomes

U
A

A kt
T

T
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3 1

1
. (12)

In his original paper,4 Layzer takes only the first harmonic
as a solution of the Laplace equation (1). Later, several at-
tempts have been made to construct an exact solution for the
case of AT = 1 near the tip of the bubble, writing the solution of
Eq. (1) as a Fourier series:3
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It can be shown,3 however, that keeping the first two terms in
the expansion and applying the boundary conditions up to the
fourth order in x leads to an imaginary component in the
solution for the asymptotic bubble velocity. To overcome this
difficulty, Refs. 3 have suggested keeping the bubble curvature
R as a free parameter of the problem, limiting the values of R
by the convergence condition of series (13). We propose a
different approach to construct an exact solution that is valid
near the bubble tip. It can be shown that writing the velocity
potential in the form
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leads to a real value of bubble velocity in all approximation
orders. Such an expansion requires no additional free param-
eters to provide convergence for the solution. Figure 89.8
shows plots of the first four coefficients a1–7 as functions of

time for the case of AT = 1. Observe that coefficients al decay
exponentially with l, satisfying the convergence condition.
Next, we calculate asymptotic values of h2 and Ub using
solution (14)–(15). The result is

h2 4 88
1 025
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The convergence of solution (14)–(15) is very fast. Keeping
only two terms in each sum in fh and fl gives the solution for
h2 and Ub within 99.5% accuracy. Remarkably, the values
given in Eq. (16) are in agreement with the results of Ref. 3 (for
AT = 1), where the authors introduced a free parameter R. This
parameter was chosen at the edge point of the region where the
Fourier series (13) converges.
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Figure 89.8
Coefficients a1–a7 of the Fourier series (14) for AT = 1.

To validate the analysis described above, we compare the
results of the model with numerical simulations. Figure 89.9
shows the bubble evolution for the case of AT = 0.1 and AT = 0.4.
We start the simulation by imposing a velocity perturbation
with amplitude v0 0 01= . gl . Solid lines represent the solu-
tion of Eq. (8); solid dots (AT = 0.4) and solid squares (AT = 0.1)
correspond to the results of simulations. Good agreement
between theory and simulations confirms the accuracy of the
model. Next, we comment on a possibility of applying the
Layzer-type analysis to study evolution of the spikes. Refer-
ence 8 has shown that such an analysis gives quite a reasonable
agreement with simulations for the case of AT = 1. The appro-
priate velocity potential for the spikes at AT < 1 in the Layzer-
type model has the form
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f hh k y
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1
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Substituting the above expressions into Eqs. (2)–(4) and ex-
panding the latter until the second order in x gives the evolution
equations that can be obtained from Eqs. (7) and (8) by
substituting h Æ -h, AT Æ -AT, and g Æ -g. Taking the limit
of t Æ �, the asymptotic spike velocity becomes

U A A g ks T T= -( )( )2 1 3 .

The last formula agrees with the prediction of the drag–
buoyancy model.6 Simulations, however, show that the spike
velocity for the interfaces with AT > 0.1 does not saturate to a
constant value. Figure 89.9 shows the spike amplitudes calcu-
lated using the simulation (open circles for AT = 0.4 and open
squares for AT = 0.1) and the results of the model (dashed lines).
As seen from the results of the simulations, the spike velocity
for AT > 0.1 keeps growing linearly in time, even after pertur-
bations become nonlinear. This is caused by the formation of
vortices in the proximity of the spike tip. If the Atwood number
is not too small, vortices move with the spike, modifying its
velocity field and accelerating the spike into the light fluid.
Thus, to describe the spike in the nonlinear regime, the velocity
potential must be modified to include evolution of the vortices.
This is a subject of current research.

The procedure described above for the 2-D flow can be
applied to analyze the bubble evolution in 3-D geometry.
Taking the z axis in the direction of the density gradient and
assuming cylindrical symmetry of the bubble, the velocity
potential in the heavy and light fluids takes the form
fh kza t J kr e= ( ) ( ) -

0 , f l kzb t J kr e b t z= ( ) ( ) + ( )1 0 2 , where
J0(x) is the Bessel function of zero order. Expanding the
velocity potential and the jump conditions across the fluid
interface up to the second order in r yields the following
system:
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The asymptotic bubble velocity and h2 derived from the
system (17)–(18) take the form

h2 8t kÆ�( ) = - ,
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3 2 1
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For the RM case (g = 0), the asymptotic bubble velocity
becomes U A ktTRM

D3 2 1
- = +( ) ( ). Repeating calculations by

keeping higher harmonics in the expansion
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Figure 89.9
Bubble (solid lines, solid circles and squares) and spike (dashed lines, open
circles and squares) velocities calculated using the potential model (lines)
and numerical simulation (circles and squares).
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 the asymptotic bubble velocity converges to
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For AT = 1, these values are close to the results of Ref. 3,
where authors have found the following values: U g kb = 0 99.
and h2 6 4= -k . .

In summary, the nonlinear analytical model of the classical
single-mode RT instability at arbitrary Atwood numbers was
developed. The model gives a continuous bubble evolution
from the exponential growth to the nonlinear regime, where the
bubble velocity saturates at

U A A g kb T T
2 2 1 3

- = +( )( )D

and

U A A g kb T T
3 2 1

- = +( )( )D .

The results of the model agree very well with the numerical
simulations and predictions of the drag–buoyancy model.6
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