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Introduction
Potassium dihydrogen phosphate (KDP) is an important electro-
optic tetragonal crystal. For example, it is used as a photonic
material in the third-harmonic generation (THG) to reduce
light wavelength from 1.054 µm to 351 nm. Microindentation
has been used to measure the Vickers and Knoop hardness of
KDP and the resulting cracking on (100) and (001) faces.
Hardness anisotropy on the (001) face, or among the (100) and
(001) faces, was found to be small (about 20%). An indentation
size effect for both Vickers and Knoop hardness for indenting
loads in the range of 25 to 200 g was observed. The large-load
Vickers hardness was estimated as 1.4±0.1 GPa. Anisotropy in
the crack sizes on (100) and (001) faces was also observed.
Cracks were longer on (100) faces, scaling like c ~ P2/3; cracks
on (001) faces were shorter, scaling like c ~ P1/2. Assuming
elastic and plastic isotropy, crack sizes were analyzed and
fracture toughness Kc was extracted. An approximate model
for analyzing crack-load microindentation data in tetragonal
crystals is presented in this article. The model uses the mini-
mum elastic modulus of the material. The effect of the isotropy
assumption on the extracted fracture toughness is estimated at
about 33%, with a 23% contribution from elastic anisotropy
and 10% from the slip system plastic anisotropy. Strain-rate
effects are identified as important aspects of KDP deformation,
especially in laser damage applications.

One of the limiting factors in the use of KDP in THG is its
susceptibility to laser damage, a process that couples light ab-
sorption with thermal and mechanical effects. (For a summary
of the electro-optical properties, see Milek and Neuberger.1)

KDP crystals are water soluble and brittle. Above its ferro-
electric Curie temperature (123 K) the crystal structure of KDP
is tetragonal, lacking a center of inversion. KDP is optically
uniaxial with the optic axis along the tetragonal z axis or [001]
direction. At room temperature the lattice constants are a =
0.7453 nm and c = 0.6975 nm, as cited in Ref. 1. The natural
habit of crystals grown from solution is a tetragonal prism
combined with a tetragonal bipyramid. The prism faces are
(100) and (010) planes. The prism axis is [001].

Microhardness and Indentation Fracture
of Potassium Dihydrogen Phosphate (KDP)

KDP is relatively soft and brittle as compared to other
optical materials, including glasses. In this article microhardness
and indentation cracking fracture measurements of KDP in-
dented on crystal planes (100) and (001) are summarized.

Kishan Rao and Sirdeshmukh2 measured the Vickers
microhardness of KDP at loads of 50 and 100 g, reporting a
value of Hv = 1.43 GPa for indentation normal to {100} planes
(what they called “a-direction”) and 1.29 GPa for indentation
normal to {001} planes (“c-direction”). Their error was re-
ported as ±4%. Anbukumar et al.3 also measured the Vickers
hardness of {100} planes of KDP. They reported hardness in
the range of 1.77 to 1.57 GPa for loads in the range of 5 to
50 g and an indentation size effect (ISE) where the hardness
decreased with increased load.

Shaskol’skaya et al.4 and Guin et al.5 reported measure-
ments of both hardness and cracking in the Vickers measure-
ments of KDP and KD2xH2–2x PO4 (deuterated KDP, with
x = 0 to 0.95). They used loads of 50 to 200 g and reported a
hardness reduction from 1.44 GPa to 1.22 GPa as the extent of
deuteration x increased from 0 to 0.95. Shaskol’skaya et al.4

also measured the length of cracks (tip-to-tip distance 2c) due
to Vickers indents. They observed that (2c)/D varied from
3.87 to 3.61 as x increased from 0 to 0.95. They also reported
a value of 51 MPa for the microstrength P/(2c)2 of both KDP
and 95% deuterated KDP.

Guin et al.5 reported measurements similar to those of
Shaskol’skaya.4 They also identified two types of slip systems
in KDP: the first system consisted of slip planes (110), (101),
(112) and (123) with a common Burgers vector �111�/2; the
second slip system was identified as (010)[100].

More recently, Marion6 has reported measured values of
fracture toughness in KDP crystals. Marion apparently used
the direct crack method described by Anstis et al.,7 although
the measured data were not described. Marion6 reported frac-
ture toughness Kc of 0.2 MPa.m1/2, as well as 0.09 MPa.m1/2

along the weakest direction (longest crack). No crystallo-
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graphic orientation of the indented faces was reported, how-
ever, nor was the applicable elastic constant (modulus) given.

Given the importance of KDP in third-harmonic generation
for 351-nm-wavelength laser systems, a systematic study of
indentation hardness (Vickers and Knoop) and microindentation
cracking in KDP is described below.

Measurements
Vickers indentation was used to measure the indentation

size effect on Hv and also to extract the fracture toughness from
the measured dependence of crack size on indenting load.
Vickers hardness on (100), (010), and (001) planes of single-
crystal KDP was measured at room temperature with a Tukon
Microhardness Tester equipped with a video image-capture
camera. Typical descent rate of the indenter is about 1 mm/min.

The KDP crystal was provided by a commercial vendor
and had been grown from the solution. The crystal surfaces
were polished by conventional means with nonaqueous slur-
ries to optical standards. Although surface roughness was not
directly measured, it was estimated to be approximately 3 to
5 nm (rms).

The indentation load was in the range of 2 to 200 g, and each
load was applied for 15 s. Five indentations were performed at
each load. The indentation diagonal D and crack size 2c (tip-
to-tip distance) were measured with an optical microscope
with a 50× objective lens. For the Vickers indentation of (100)
and (010) planes, the indenter diagonals were along the prin-
cipal directions of the type <100>. No differences were ob-
served in the indentation diagonal or crack size of (100) and
(010) faces.

For the indentation of (001) planes, we selected two in-
denter orientations: in orientation (1), the indenter diagonals
were parallel to [100] and [010]; in orientation (2), the indenter
sides were along [100] and [010].

Figure 86.63 shows the measured hardness over the range
of indenting loads used. Figure 86.64 shows the measured
crack size for Vickers indentation of (100) and (001) faces. The
crack-to-indent ratio c/(D/2) varied from 2 to 4.5, depending
on load and orientation.

Knoop indentation was used to measure the indentation size
effect on Knoop hardness and also the hardness anisotropy of
the (001) faces. For the indentation size effect (loads of 50 to
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Variation of indentation crack size c with indenting load. The tip-to-tip
surface crack length is 2c.

200 g), the indenter’s long diagonal was along [010]. These
results are included in Fig. 86.63.
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For the hardness anisotropy, we used a load of 50 g and
measured the variation of Hk with orientation θ of the Knoop
indenter with respect to the indented surface. Angle θ = 0°
corresponds to the indenter long diagonal along the [010]
direction. The angle θ was changed in increments of 10° from
θ = 0° to 90°. The hardness anisotropy is shown in Fig. 86.65.
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Figure 86.65
Dependence of Knoop hardness on angle θ of indent on the (001) plane.
θ = 0 corresponds to the Knoop diagonals being along (100) and (010).

Results
The measured Vickers hardness is seen to vary between 1.7

and 1.4 GPa over the indenting load range of 50 to 100 g. This
hardness range is consistent with the measurements of Rao
et al.2 over the same load range. Our measurements are also
consistent with those of Anbukumar et al.3 over the load range
of 25 to 50 g, and with Guin et al.5 and Shaskol’skaya et al.4

who reported a hardness of 1.45 GPa at a load of 200 g.

The measured Vickers hardness brings up two questions:
What is the relative hardness of (100) and (001) faces? What is
the relative hardness of orientations (1) and (2) of the indenter
on face (001)?

Our results show that for loads less than 150 g, (001) faces
are harder than (100) faces by as much as 14% at lower loads.
On (001) faces, orientation (1) is harder than orientation (2), by
as much as 10%. At loads of about 200 g, however, both faces
and both orientations have hardness in the range 1.4±0.1 GPa;
therefore, this value may be used as the load-independent,
orientation-insensitive Vickers hardness of KDP.

Our results also show that the Knoop hardness on the (001)
face is not strongly anisotropic. The variation of hardness with
direction is seen to be less than 10%.

No analysis is available to convert measured micro-
indentation crack sizes to fracture toughness in tetragonal
crystals. The only available analysis is for isotropic materials,
such as glasses or polycrystalline ceramics (see Ref. 8). There-
fore, to convert our direct measurements of indentation crack
size to a fracture toughness, we shall assume that KDP can be
described by an equivalent isotropic Young’s modulus E
= 38.7 GPa. This value is the mean of the Reuss and Voigt
averages for the Young’s modulus, with the derivation pre-
sented in the Appendix. We have analyzed the microindentation
crack measurements (indentation diagonal D, tip-to-tip crack
size 2c) using the model of Evans9 and Anstis et al.7 The
comparative merits and applicability of various models to
extract the fracture toughness by microindentation cracking in
optical glasses and brittle ceramics have been discussed by
Ponton and Rawlings10,11 and Lambropoulos et al.12

Evans9 used dimensional analysis and curve fitting over a
range of c/(D/2) from 1.5 to 7 and for many polycrystalline
ceramic materials; thus, this model should be applicable to
both short and long indentation cracks. According to the Evans
model,9
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where Kc is the fracture toughness, H is the hardness, D is the
indentation diagonal, E is the Young’s modulus, and c is the
half-crack size. Lankford13 included Al2O3, soda-lime silicate
glass, and NaCl to the materials analyzed by Evans.9

Anstis et al.7 examined various glasses (glass-ceramic,
soda-lime, aluminosilicate, lead alkali), polycrystal Al2O3 and
sapphire, Si3N4, SiC, Ca-PSZ ZrO2, Si, and SiC/Co and con-
cluded that
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The Anstis model is based on the assumption that the
observed surface cracks are surface traces of sufficiently large
radial cracks, so that c ~ P3/2. On the other hand, the Evans
model is applicable for both shorter near-surface cracks, where
c ~ P, and deeper radial cracks.

As an example of this approach, when the data by
Shaskol’skaya et al.4 or Guin et al.5 are analyzed via the
Evans model and with E = 38.7 GPa, they yield Kc = 0.24±0.04
MPa.m1/2 at the indentation load of 200 g. The Anstis model
leads to Kc = 0.17±0.03 MPa.m1/2 over the same increase of
indentation load. The Anstis model predictions are in agree-
ment with the reported values of 0.09 to 0.20 MPa.m1/2 by
Marion.6 Note, however, that the work of neither Shaskol’skaya
et al.4 nor Guin et al.5 describes the orientation of the indented
planes or the orientation of the indenter with respect to the
indented plane.

The results of our data analysis using the Evans model are
shown in Fig. 86.66, where we have used E = 38.7 GPa. We
observe that the crack-to-indent aspect ratio 2c/D is in the
range of 2 to 4.5, therefore within the range of applicability of
the Evans model. It is seen that the computed fracture tough-
ness Kc of indenting the (001) planes is higher than that when
indenting the (100) planes. It is also observed that smaller
crack sizes apparently produce higher fracture toughness. For
2c/D values of 3 or higher, however, it is seen that the fracture
toughness becomes independent of the geometry of the indent
producing the cracks. For completeness, Fig. 86.66 shows the
(average) ± (one standard deviation) of the computed fracture
toughness for each of the two orientations (1) and (2) on faces
(001), as well as that for face (100). The standard deviation was
computed from the fracture toughness variation over all the
indenting loads used. The results for the two orientations of
face (001) overlap, while exceeding that for (100).

The comparisons of the models by Evans9 and Anstis et al.7

are shown in Fig. 86.67. Both results are based on using
Young’s modulus E = 38.7 GPa. We observe that the Evans
model predicts fracture toughness that is a factor of 1.2 to 1.45
higher than the predictions of the Anstis model; however, both
models give the same qualitative ranking of the data.

Discussion
The analysis above rests on two important assumptions. The

first assumption is that the anisotropic KDP crystals can be
analyzed for fracture toughness using an equivalent isotropic
Young’s modulus.
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To estimate the effect of such an assumption, for example,
on the predictions by the Evans model, we observe that that
model uses the term (E/H)0.4. As the unconstrained Young’s
modulus E varies from 20.4 to 65 GPa, we conclude that the
minimum fracture toughness corresponds to the lowest
Young’s modulus of 20.4 GPa. This, in turn, leads to a change
in Kc by (20.4/38.7)0.4 = 0.774. Therefore, the effect of elastic
anisotropy is estimated to be about 23% on the computed
fracture toughness. These results are summarized in
Table 86.V. In our data, we give the uncertainty over all the
indenting loads used. It is seen that the Anstis et al. model,7

when used in conjunction with the minimum Young’s modulus
of 20.4 GPa, yields fracture toughness in the range of
0.09±0.02 to 0.22±0.06 MPa.m1/2, in agreement with the
values 0.09 to 0.2 MPa.m1/2 cited by Marion.6

The other important assumption is that the material can be
described as an elastic-plastic solid. With a melting point of
Tm = 525.6 K, the room temperature at which the tests were
conducted represents a homologous temperature of 293/525.6
= 0.57. At such a relatively high temperature, and under the
action of the high compressive stresses due to indentation, it is
expected that KDP may deform by a variety of mechanisms,
including dislocation glide on crystallographic slip systems, or
power-law creep by dislocation climb/glide. At temperatures
of about 110°C, KDP is known to exhibit macroscopic plastic-
ity in a uniaxial compression.5 The room-temperature com-
pressive yield stress does show anisotropy, being 140 MPa for
compression along [100], 100 MPa along [110], and 130 MPa
for compression along [001]. At 110°C, these values are

Table 86.V:  Calculated fracture toughness Kc (Mpa.m1/2) for KDP.

Using average E = 38.7 GPa Using minimum E = 20.4 GPa

Indents on Evans model9 Anstis et al. model7 Evans model9 Anstis et al. model7

(100) plane 0.22±0.02 0.13±0.03 0.17±0.02 0.09±0.02

(001) plane,

indent orientation (1)

0.37±0.08 0.30±0.08 0.29±0.06 0.22±0.06

(001) plane,

indent orientation (2)

0.28±0.07 0.19±0.06 0.22±0.05 0.14±0.04

Shaskol’skaya et al.4 0.24±0.04 0.17±0.03 0.19±0.03 0.12±0.03

As cited in Marion6 0.09–0.20

Using direct crack method of Anstis et al.7

but with no information on E value used.

reduced by a factor of about 10;5 therefore, anisotropy under
uniaxial conditions is about 20% of the uniaxial compressive
yield stress. The anisotropic variation of Knoop hardness that
we have measured on the (001) faces was seen to be within 10%
of the average value. Likewise, the largest observed difference
in Vickers hardness of (100) and (001) faces was no more than
about 10%. Therefore, a total variation of 20% in hardness due
to crystallographic anisotropy is expected, consistent with the
anisotropy of the uniaxial compressive yield stress. On the
other hand, as Eqs. (3) and (4) show, a 20% variation in
hardness is expected to lead to a variation in the computed
fracture toughness of about 10%.

Thus, the estimates of the effects of the Young’s modulus
anisotropy and hardness anisotropy, when combined, lead to a
difference of about 33% in the fracture toughness as computed
by an isotropic elastic-plastic model such as by Evans9 or
Anstis et al.7

On the other hand, at a homologous temperature of 0.57
with respect to the melting point, power-law creep is a time-
dependent process. Now, the strain rate depends on stress via
a power law of exponent in the range of 3 to 8. In our
experiments we have imposed a fixed strain rate, as determined
by applying the indentation load for 15 s on the KDP faces. In
typical laser-damage applications, the laser pulse duration
over which damage accumulates is of the order of 10 ns,
implying, therefore, that the applicable strain rates are much
higher than those in indentation.
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Given the lack of data describing the dependence on stress
and temperature of the deformation mechanisms of KDP, the
strain-rate effects are more difficult to estimate. The develop-
ment of deformation mechanism maps for KDP is thus an area
identified for future research.
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Appendix A:  Elastic Anisotropy of KDP

The elastic behavior of the single-crystal KDP is character-
ized by six elastic constants, which are shown in Table 86.VI.

Figure 86.68 shows the variation of the Young’s modulus of
a rod of KDP with orientation of the rod. The figure shows the
unconstrained Young’s modulus Eu (i.e., when the only stress
is in the direction of the rod, without any transverse stresses):
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where θ is the angle between the direction of the rod and the
cubic axis [001] and φ is the angle between the projection of the

Table 86.VI:  Elastic constants of KDP at 20°C.

C11 C33 C12 C13 C44 C66

71.65 56.4 −6.27 14.94 12.48 6.21

Units of Cij are GPa; data from Haussühl,14 as cited in Milek and Neuberger.1

Stiffnesses Cij relates stresses and engineering strains.

S11 S33 S12 S13 S44 S66

1.51 1.95 0.18 −0.40 7.81 16.2

Units of Sij are 1/(100 GPa); data from Hearmon,15 as cited in Milek and Neuberger.1

Compliances Sij relate engineering strains and stresses.

rod axis on the (001) plane and the [100] direction. The
Young’s modulus Eu varies from about 20 GPa to about
65 GPa. When averaged over all rod directions (i.e., integrated
over the surface of a unit-radius sphere with differential ele-
ment of area dA = sinθ dθ dφ), we find �Eu� = 35.5 GPa.

Likewise, the constrained Young’s modulus Ec (where no
strains transverse to the rod are allowed) is
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Ec varies from about 40 GPa to 70 GPa, as shown in Fig. 86.68.
When averaged over all directions, the result is �Ec�
= 51.4 GPa. The results in Fig. 86.68 clearly show that KDP is
quite anisotropic.

To get a better idea of the elastic anisotropy, we can also
determine the Reuss and Voigt averages as described by Hirth
and Lothe,16 who summarize the earlier results by Hill.17 The
Voigt averages for the shear modulus GV and Lame constant λV
are given by

G C C C Cijij iijj ijij iijjV V= −( ) = − +( )3 30 2 15,    ,λ (A3)
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where repeated indices are summed over the range i,j = 1,2,3.
Here the constants Cijkl relate the stress σij and strain εij
tensors, σij = Cijkl εkl. We thus find the average Young’s
modulus based on the Voigt scheme as EV = 44.3 GPa. The
corresponding Poisson ratio is νV = 0.23.

The Reuss averages are given by

1
2 15

1
6 2 15

E
S S

G
S Sijij iijj ijij iijj

R R
= +( ) = −( ),   , (A4)

where the constants Sijkl relate the strain εij and stress σij
tensors, εij = Sijkl σkl. We find the Reuss average of the Young’s
modulus ER = 33.0 GPa. The corresponding Poisson ratio is
νR = 0.30.
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