Spherical Cavity Expansion in Material with Dengfication

Introduction

Fused silica (SiO,) exhibits some unique features when it is
ground or polished. It also densifies permanently under large
compressive stresses at room temperature; =3 up to 15% per-
manent densification has been observed.?3 The experimental
data for densification from different works, however, are
obviously inconsistent,* which may result from different lev-
elsof shear stresses present in the experiments. The molecular
dynamics simulation by Tse et al.> proved this suggestion by
showing that the densification is caused by extensive bending
of atomic bonds, even under pure hydrostatic pressure. Based
ontheseobservations, anew constitutivelaw wassuggested by
Lambropoulos et al.® for this kind of material.”

Tounderstandthematerial behavior under compression, the
cavity expansion problem is solved analytically. Both associ-
ated and non-associated flow theories have been studied. A
densification parameter has been introduced in the proposed
material model. Thematerial isassumedto beperfectly plastic;
however, the introduction of densification produces an effect
similar to hardening.

Constitutive M odel

Thetraditional shear flow theory cannot describetheplastic
behavior of fused silicabecausethe permanent densificationis
so large that its effects cannot be neglected. Experiments and
observations on fused silica have suggested that the shear will
facilitate the densification.#>7 Lambropoulos et al.6 sug-
gested anew material model to describe this kind of material.
Theyield surface is defined by the effective stress

O =—00m +(1-a)Te, D
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and a isthe densification parameter, which rangesfrom0to 1.
Here the summation convention is used. g is the Kronecker
delta. For pure hydrostatic compression, where 011 = 055 = 033
= —p, the mean hydrostatic stress g, = —p and effective shear
T.=0. For pureshear, 0,,=0and 1, =|r|. For uniaxial tension,
Om=0/3 and 1, =0/+/3. Notice that 1, is always positive.

Thematerial yieldswhen o,>Y. Thenormal of yield surface
can be expressed as

of a
IJIJ 60ij 3 .

3, )

When theinner product 1;;daj; > 0, the small change of stress
do;; causesfurther deformationloading. When p;;doj; <0, itis

unloading. Permanent strains sijp evolve as

dg.p:DO’ if uijdaij <0

=50, if pydoy;>0° ®)

With continued loading, we assume that the permanent
strains are not affected by the rate of loading; thus, the flow
rule gives

0
dfl?:dA%, g(alj):_a’am-‘-(l_a')re' (4)

where g(oj) is the flow potential. Generally the material
constant a’ in Eq. (4) isdifferent from a in Eq. (1), which is
called the non-associated flow theory. For special case a = a’,
called the associated flow theory, the permanent strain incre-
ment is normal to the yield surface in stress space.

By using the principle of plastic work equivalence

0ij dsijp =co.d&P, where cisanumerica factor, the plastic
strain increment can be solved as
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For a standard elastic theory (Hooke's law), the elastic strain
increment is

L= 2v)

1
def} :—dsj ;dop, (6)

whereGisshear modulus, definedas G = E/2(1+Vv). Thenthe
total strain increment is given by

dejj =def +def. )

The incremental stress—strain relation, written in tensor for-
mat, is

dojj = Djj dey ©)

where the fourth-order tensor Dy isthe material’sincremen-
tal constitutive law matrix.

Cavity Expansion

A spherical cavity embedded in aninfinite mediumwith an
initial radius ag is subjected to inner pressure P. With the
increase of P, the cavity wall expands. When the pressure is
larger than the initial yield pressure P, a plastic zone forms
outsidethe cavity wall. Dueto the symmetry, aspherical polar
Lagrangian system (r, 6, ¢) at the center of the cavity hasbeen
used. The material deforms only aong the radius, and the
displacement is a function of the radius only. There are only
three nonzero stresses (O',—,O'g,U¢) and strains (s,,£9,2¢).
By symmetry, we also have gg = 0 and &g = &. Then the
equilibrium equations reduce to

rdﬂ+2(ar

& ~0g)=0. 9
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From elastic solution and yield function, the initial yield
pressureis

P.= Y. (10)

Equation (10) is plotted in Fig. 85.10. With the increase of a,
the material yields at higher inner pressure.

It can be proved that g > o, at any point, so the effective
stress can be simplified to

1J§a (0g-0y). (12)

Oe = —%(ar +20¢) +

With the help of theyield function, therelation of stressesina
plastic zone is solved by

3Y+[J§—a(«/§ —1)]
J3-ale+3) "

Og = (12)

Substituting Eq. (12) into the equilibrium Eq. (9), the stresses
in the plastic zone are

G5145

Figure 85.10
Initial yield pressure versus densification parameter. Pg is the initial yield
pressure without densification.
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where C can be solved from the boundary condition at the
cavity wall (r = a). At the plastic—elastic boundary (r = b),
traction continuity gives

6a V3(1-a) —q PO
(b2+3)a-V3 — yO
e f—(th)a (4

It can be easily verified that b > a if and only if P> P...

For the cavity problem, the flow potential [Eq. (4)] is

=0 T I )
1-a’
i (o0 o) 19

By the flow theory def’ =dAdg/doy;, we have
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From the elastic theory, the elastic strain rateis
1
def =E(dar -2uday),
(17)

de§ =de§ = é[—vdar +(1-v)doy).
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The total strain rate contains both elastic and plastic parts:
dejj = dsi? + dei?. By eliminating the dA, we have

A'de, +2deg =é{(A’ -2v)da, +2[1-(1+A)]dog}

(18)
oo
3-(v3-1a’

Hill hassolved thisproblem for the shear flow theory.8 Follow-
ing his method, the displacement increment can be written as

du(r,b) = —db+—dr—% @db, (19)

where v is defined as the “velocity” of the particle. Defined
in terms of the total displacement u and plastic—€lastic
boundary b,

v=_0b (20)

Written in terms of v and db, the nonzero stress and stain
increments are

de =ai(du) Y b,

(21)

do‘r = % +Vai§db,
ob or

do'e = é@ +V%§db.
ob or

Substituting Egs. (21) and (13) into (18), we have
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This is a first-order partial differential equation for v. By
integrating Eq. (22) from the cavity wall (r = a) to the plastic—
elastic boundary (r = b), the problem is solved. Equation (22)
iscoupled (viaa, b) and subject to numerical integration. The
fourth-order Runge—Kutta method is used to solve this equa-
tion. For verification, the problem is also solved by using the
finite-element packageAbaqus(Hibbitt, Karlssoon, & Sorensen,
Inc.). The large deformation theory is used in the finite-
element simulation.

Associated Flow Theory

For the associated flow theory, a=a’ and A= A’. Theflow
potential coincides with the yield surface. Perfect plastic
deformation is also assumed. Pressure—expansion curves are
shown in Fig. 85.11 from both the finite-element and numeri-
cal integration results. It isinteresting that with theincrease of
o the material becomes “softer” for small a and “harder” for
large a. It is also noticed that for small a, thereis a pressure
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Figure 85.11

Cavity pressure—expansion curves for different a’s.
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limit for cavity expansion, as expected for perfect-plastic
material deformed with shear flow only. When the inner
pressure is close to this limit, the cavity expands spontane-
ously. For large a, we do not see this pressure limit. The
difference between finite-element and numerical integration
resultsis dueto the use of the finite deformation theory in the
finite-element simulation.

The densification parameter a also affects the distribution
of stresses at maximum load. The stresses at maximum load
(1.45P.) areplotted in Figs. 85.12(a) and 85.12(b). For small
a, the hoop stress is compressive; for large a, the hoop stress
istensile. Weknow that fractureunder loadiscontrolled by these
stresses. For small a, if thereis fracture under load, it happens
under the surface; for large a, it will happen at the surface.

The residual stresses after 1.45 P, loading are plotted in
Figs. 85.12(c) and 85.12(d) for a =0.3 and 0.6. The densifica-
tion parameter also affects the residual stresses. For small a,
the surface layer isunder compression; for large a, it isunder
tension. The layer with large residual stresses is thicker for
small a. It needsto be mentioned that theinitial yield pressure
P.will increasewith a, soweexpect, under thesameload, even
smaller residual stressesfor large a. It is observed that fused
silica has smaller residual stresses after grinding.® Fig-
ure 85.12(e) al so comparesthe hoop stressunder the sameload
for a=0.1, 0.3, and 0.6. At thisload, only elastic deformation
occursfor a =0.6.

Non-associated Flow Theory

For the non-associated flow theory, the material behavior is
controlled by bothyield function[Eq. (1)] and plastic potential
[Eq. (4)]; now aisnot equal to a’. Thuswe havethree material
parameters (a, a’, Y) to describe the plastic deformation. The
reasonable combinationsof a and a’ should beinvestigated. It
isnot possibleto have a =1 and a’ = 0, which means that the
material yieldswith pressurebut can be permanently deformed
only with shear.

Theintegration of Eq. (22) hasbeen carried out numerically
for different combinationsof a and a’. Theresultsfor a =0.3
and a = 0.6 are shown in Fig. 85.13. When a = 0.3, it is
physically impossible for a’ = 0.6 and 0.9, which means that
the cavity cannot decrease in size with an increase in inner
pressure. For the same reason, a’ cannot be 0.1 or 0.3 for
a = 0.6. From the analysis, we found the number separating
thesetwo regionsto be around 0.46. Thesefindings have been
summarized in Fig. 85.14. For small a, a’ must be small and
vice versa.
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Material possibility map.

Figure 85.13(a) shows the pressure expansion curves for
small a and a’. As observed in the associated theory, thereis
apressure limit for spontaneous growth. For small a, with the
increase of a’, the limit pressure decreases, which means that
the material becomes “ softer.” The spontaneous growth pres-
sureisnot observed for large a and a’ [see Fig. 85.13(b)]. We
also noticed that, for large a, the material becomes “harder”
with the increase of a’.

Conclusion

The cavity problem has been studied by using a new
material model. Both associated and non-associated flow theo-
ries have been examined. For the associated case, a = a’ and
plastic potential is coincident with yield surface. We have two
material parameters(a, Y) to describeplastic deformationwith
densification. The initial yield pressure increases with a.
When a issmall (small densification), thereisasmall soften-
ing with theincrease of a. The cavity can grow spontaneously
when theinner pressurereachesalimit. When aislarge (large
densification), there is a remarkable strengthening with the
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increase of a. The spontaneous cavity growth isnot observed.
The densification affects stress distributions at loading. When
the densification parameter a is small, the hoop stress under
load is compressive, similar to the material flowing without
densification. When a is large, the hoop stress under load is
tensile. Theresidual stressesareal so affected by densification.
For small densification, the surfaceresidua stressiscompres-
sive; it istensile for large densification.

For the non-associated case, the plastic behavior is de-
scribed by three material parameters: a, a’, Y. By investigating
the non-associated case, we found that there are physically
impossible combinationsfor o and a’. It is necessary to keep
both a and a’ small (<0.46) or large (>0.46). The increase of
a’ causes softening for small a and hardening for large a.
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