Theory of the Hot-Spot Dynamics and Deceler ation-Phase
| nstability of Imploding | CF Capsules

Introduction

In inertial confinement fusion! (ICF), a spherical shell of
cryogenic deuterium and tritium (DT) filled with DT gas is
accelerated by direct laser irradiation (direct drive) or x-rays
produced by ahigh-Z enclosure(indirect drive). Indirect-drive
ICF, the laser pulse starts from a constant, low-intensity foot
designed to drive auniform shock through the shell. After the
shock breaksout onthe shell’ sinner surface, thelatter expands
forward, launching ashock inthegasand ararefactionwavein
the shell. Asthe rarefaction wave travels across the shell, the
shell’souter surfacemovesat approximately constant vel ocity.
When the rarefaction wave reaches the shell’s outer surface,
the latter starts accelerating and the so-called acceleration
phase begins. At about the shock breakout time, the laser
power beginstorise, first slowly and then morerapidly to keep
the shell close to the shock front traveling inside the gas. A
second shock originating within the shell is launched during
the initial pulse rise and merges with the first shock before
reaching the center of the capsul e. The accel eration phaseends
when the laser is turned off and the shell starts traveling at
approximately constant velocity. Standard direct-drive pulse
designs make use of such a sequence of two shocks merging
into one, whereasthelatest pulse designsof indirect-drive |ICF
make use of a sequence of four shocks? coalescing into one
before reaching the center.

In both direct- and indirect-drive ICF, the single shock
resulting from the multiple-shock coalescence travels in the
gasin the form of astrong shock; i.e., AP/Pp, >> 1, where AP
isthe pressurejump acrossthe shock and Py, isthe gas pressure
beforethe shock. Such ashock isreflected off the center of the
capsule(return shock) and subsequently off theincominginner
shell surface, which in turn is impulsively decelerated. The
shock reflected off the shell travel stoward the center, whereit
is reflected again and subsequently reflected a second time
from the shell. At each reflection off the shell, the latter is
impulsively decelerated and the shock gets weaker until the
pressure jump across the shock front is smaller than the
pressure before the shock (AP/P, < 1). The time interval
corresponding tothemultipleshock reflectionsisreferredtoas
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theimpulsivedecel eration phase. Typically, thereflected shock
becomes weak after the first or second reflection off the shell.
At this point the material enclosed by the inner shell surface
developsafairly uniform pressure profile and isreferred to as
the hot spot. After thereturn shock reflects off the shell, the hot
spot is formed, and its pressure is large enough that the shell
velocity islower than the hot-spot sound speed, i.e., the flow
is subsonic. When the hot spot is formed, the shell is deceler-
ated in a continuous (not impulsive) manner while acting like
apiston onthehot spot. Such acontinuousslowing down of the
shell up to the stagnation point occurs over a period of afew
hundred picoseconds and is referred to as the continuous
deceleration phase. Figure 85.1 shows the time evolution of
the deceleration g of ashell designed for direct-driveignition3
on the National Ignition Facility (NIF). The timet = 0 ns
represents the stagnation point, and the continuous decelera-
tion starts at about 200 ps before stagnation. The NIF capsule
is a 345-um-thick shell of DT ice with an inner radius of
1350 um. The shell isfilled with DT gas at a temperature of
18 K and adensity of 2 x 1074 g/cm3. During the decel eration
phase, the hot-spot pressure, density, and temperatureincrease
until reachingtheignition conditions. If theshell issufficiently
dense, theignited hot spot will trigger apropagating burnwave
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Figure 85.1
Time evolution of the inner-shell-surface deceleration for adirect-drive NIF
capsule. Timet = 0 is the stagnation time.
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in the shell and a significant fraction of the shell mass will
undergothermonuclear burnif theshell’sareal density exceeds
afew glcm?.

Itiswell knownthat the outer shell surfaceisunstabletothe

Rayleigh-Taylor (RT) instability duringtheaccel eration phase;
however, because of massablation, theinstability growth rates
are significantly reduced*10 with respect to their classical
values. Thetheory of theRT instability inan accel erated planar
foil has been carried out in Refs. 69, where the growth rate’'s
dependence on the abl ation vel ocity V,, density-gradient scale
length Ly, =min| p(p') ™Y, front acceleration g, and power
index for thermal conduction v (here the thermal conductivity
is approximated by k = kgTV) is calculated by analytically
solving the conservation equations. In Refs. 6-9, the stability
of long (kL < 1) and short (kL,,, > 1) wavelength modes is
investigated for large and small Froude numbers (Fr), where
Fr=V2/gly and Ly=Lw'/(v+1)"*. It is found that
short-wavelength modes are completely suppressed when
Fr > 1 and the unstable spectrum exhibits a cutoff at long
wavelengths, i.e., Keytoff Lm < 1. Instead, when Fr < 1, the cut-
off occurs at short wavelengths (Kqioff Lm~ 1/Fri/3), and both
long- and short-wavelength modes (up to the cutoff) are
unstable. Thestability analysisin Refs. 8and 9 hasbeen carried
out separately for large and small Froude numbers as well as
long and short wavelengths. In Ref. 10 the different growth-
rate solutions have been combined into a single formula that
asymptotically matchesthose solutionsin the different param-
eter ranges.

Despite the significant growth-rate reduction induced by
mass abl ation and finite-density-gradient scale-length effects,
the amplification of surface perturbations can be substantial,
so the thickness of ICF shells must be chosen to prevent the
shell from breaking up when the RT bubble amplitude equals
the shell thickness.

Evenwhen the shell integrity is preserved during the accel-
eration phase, the hot-spot ignition can be quenched!! by the
deceleration-phase RT instability. Thelatter istheinstability of
theinner shell surfacethat occurswhen the shell isdecelerated
by the high pressure building up inside the hot spot. The
deceleration-phase RT causes the cold shell material to pen-
etrate and cool the hot spot, preventing it from achieving
ignition conditions. Furthermore, if theinner-surface perturba-
tion becomes nonlinear, afraction of the shell’skinetic energy
isused to feed the lateral shell motion induced by the instabil-
ity, reducing the compression of the hot spot. Typical seedsfor
the decel eration-phase RT arethe surface nonuniformitiesthat

feed through the shell from the outer surface during the
accel eration-phase instability.

It is known that the deceleration-phase RT is classical1?
and all modes are unstable. The finite-density-gradient scale
length13 reduces the instability growth rates, which can be
approximated by the classical fitting formulal

| kg
= [——— 1
Y dec 1+ kL N

where L isthe shell’sdensity-gradient scale length and k isthe
perturbation wave number approximately equal to I/Rwith R
being the hot-spot radius and | the mode number. Observe that
Eq. (1) indicates that all modes are unstable, with the fastest-
growing modes having short wavelengths (kL >> 1) and
growth rates ygec(KL >>1) = \/g/L. Asdescribed in Ref. 13,
the finite-density-gradient scale length is produced by the
thermal conduction inside the hot spot. It is shown in this
articlethat mass ablation from the shell’sinner surface signifi-
cantly reduces the deceleration RT growth rates, leading to
much lower growth rates than predicted by Eq. (1) and to a
cutoff in the unstabl e spectrum. Mass ablation is caused by the
heat flux | eaving the hot spot and depositing ontheshell’ sinner
surface. We have calculated the ablation velocity and the
shell’s density-gradient scale length during the deceleration
phase. Then, usingthe RT theory of Ref. 10, wehavecal culated
thegrowth ratesand compared themwith theresultsof numeri-
cal simulations. For the direct-drive NIF-like capsule under
consideration,3 the cutoff mode number for the decel eration-
phase RT is approximately | o = 90.

The remainder of this article is divided into two major
sections that describe the hot-spot dynamics and the linear
stability. The hot-spot model isvalid from the beginning of the
continuous deceleration phase (after the shock reflection off
the shell) until the onset of theignition process. The evolution
of the hot-spot radius, mass, temperature, and density is cal cu-
lated in terms of initial conditions and hot-spot pressure. The
second sectionisdevoted to the hydrodynamic stability analy-
sis of the shell during the continuous decel eration phase. The
growth rate of the RT instability is derived, including finite-
density-gradient scale length and ablation velocity.

Hot-Spot Dynamics

The hot spot is a low-density plasma heated by the shock
and by the PdV work of the cold, dense surrounding shell. Its
massismade of theionized DT gas and the plasma ablated off
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the inner shell surface. The hot-spot dynamicsis governed by
the mass, momentum, and energy conservation equations. The
energy equation must include the electronic thermal conduc-
tion and apha-particle energy deposition. Bremsstrahlung
radiation energy losses are neglected in this model because
they add great complexity to the mathematical solution and
their contribution is typically smaller than the mechanical
work and/or the fusion power. The magnitude of the radiation
losses is larger than the fusion power for temperatures below
4.4 keV, when the PdV work rateistypically greater than both
radiationandfusion power. Thusat such|ow temperaturesboth
radiation losses and al phapower are negligiblewith respect to
the compression work rate. The PdV work rate decreases near
the shell’s stagnation point, where higher temperatures are
reached within the hot spot. If such temperatures are well
above 4.4 keV, the apha-particle power is greater than the
radiation losses and the bremsstrahlung term can again be
neglected in the energy equation. The model described in this
section may not apply to capsules that do not ignite or with
small ignition margins (small mechanical work rate and low
final temperatures) as their evolution can be significantly
affected by radiation losses.

Thismodel isexpected to predict the main characteristicsof
the deceleration phase up to the onset of ignition. The actual
ignition process in the hot spot is not accurately modeled
because the apha-particle energy is assumed to be locally
deposited within the hot spot. Instead, the al pha-particle mean
freepathistypically of the sameorder of magnitude asthe hot-
spot radius, and afraction of the alpha particles|eaves the hot
spot and is deposited on the shell’sinner surface. Those apha
particles trigger the propagation of a burn wave in the cold,
dense shell, which burns until it disassembles. The thermo-
nuclear burn wave propagation is not described by our model
and requires a diffusion (or kinetic) treatment of the alpha-
particle population. Detailed analysis of the burn wave propa-
gation and the effects of the RT instability on the capsule gain
can befound in Ref. 11.

Even though the local deposition approximation used here
isstrictly valid only when all the al pha particles are absorbed
within the hot spot, we artificially include the effect of alpha-
particlediffusion by adding amultiplicativefactor 6< 1tothe
alpha power term. When 6 < 1, one should also include the
alpha power deposited at the inner shell surface due to the
1-6fraction of leaking alpha particles. Such acontribution is
not included in the derivation of the hot-spot profiles, ablation
velocity, and density-gradient scal elength because an analytic
solution of the conservation equations could not be found.
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Thus, an additional limitation of thismodel isthat thefraction
of alphaparticlesleaving the hot spot issmall compared to the
fraction absorbed.

In conclusion, the model described below is suitable to
describe the decel eration phase up to the onset of ignition, but
it does not include the relevant physics pertaining to the
ignition process or the burn wave propagation. We specul ate
that most of the RT instability growth occurs before ignition
takes place when our model captures the essential physics of
the hot-spot dynamics.

1. General Equations

Themodel isbased onthe L agrangian form of theequations
of motion as the boundary of the hot spot moves before and
after stagnation. ThelL agrangian equationsof motionin spheri-
cal geometry can be written in the following form:

p 3dm’
a_U+r26_P: , (3)
ot om
40 T 0 oT
oo 1EF:a_mK(T)r4pa_m+ﬁeE"<av>’ 4

where ¢, = 3/2 A is the specific heat at constant volume,
A=m /(1+Z), m and Z aretheion mass and atomic number,
respectively (Z=1for DT), I istheratio of specific heats or
adiabatic index (I" = 5/3 for a monoatomic gas), k(T) = koTV
isthe Spitzer thermal conductivity, v=5/2, E,=3.5MeV, Ois
the absorbed alpha-particle fraction, and (0V) is the fusion
reaction rate. Theindependent variablemisproportional tothe
mass within the radius r:

m= [5 p(x,t)x2dx. (5)

Equation (4) has been derived by using the standard ideal gas
equation of state P = pT/A and by neglecting bremsstrahlung
losses. To solve the conservation equations, we adopt the
subsonic flow ordering, which represents a good approxima-
tion after the shock transient. We let t ~ RICg (or t ~ RIU),
r ~R, and U ~ OC,, where O << 1 represents the flow Mach
number. We find the solution of Egs. (2)—«(4) by a formal
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expansion in powers of [. By inspection, Eq. (3) reduces to
0P =0(0P/m), yielding

P=PRy(t) (6)

and reproducing the well-known flat pressure approximation.

The density in the energy equation can be eliminated by
using the equation of state, and the fusion rate can be approxi-
mated withaquadraticterm (ov) = §, T2. Suchan approxima-
tionisvalidaslong as5< T < 25 keV, which isatemperature
rangerelevant to | CFignition experiments. After astraightfor-
ward manipulation, the energy equation can berewritteninthe
following form:

Rs® 0 TF
R = A0

0 0T | OE,S A
= Akot) - réTv 1 ST

Rs()T. ()

Equation (7) canbefurther simplified by defining thevariables
n=T/RLY" and

34/3 KO

_3r-yv-1
T A3 T, - ’

3r

20 [ Ars(t) et + 7 ®)

where 1 is a constant to be determined by the initial condi-
tions. Using Eq. (2) to determine the relation between the
volume within theradiusr and I1, one finds

3= 3 _ o,

A (O n(m',7)dm’, (9)

— /M
®=0

and the energy equation can be rewritten in the following
simple form:

on_o

V- 4/3_
aT amrI » am+A aMAs(0)”. (10)

where

3v+1+3r(1-v) _AfP e, S

5= T A, = :
ar @030 4k

(11)

The next step isto integrate Eq. (10) between 0 and mand to
eliminate I, leading to the following equation for ®:

¢4/3%g 62¢+A DR’ (12

Observe that the a particle term on the right-hand side of
Eg. (12) can be combined with the left-hand side by defining
the new dependent (W) and independent () variables:

W = dexp| Dy fy Rs(t)at|, (13)

n=no+ Ito dt'Rys(t )

A]/3I'

exp% + %Eba fi Prs(t")at” E (14)

wheret =ty represents the beginning of the continuous decel-
eration phase,

D, =1 EaS:

r 2y

: (15)

and ngisanew constant. After ashort calculation, Eg. (12) can
be rewritten in the following simple form:

w“ﬁ%g am2 (16)

A self-similar solution of Eq. (13) can be found by setting
1

D a—3(v+1) (Bv+1 ~
g Aot F F(&), ¢
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where £ and F(¢§) aredimensionlessand aisaconstant with the
dimensions of N*/mto be determined using the initial condi-
tions. Substituting Eq. (17) into Eq. (16) yields the following
ordinary differential equation for F(&):

J1-Q(v +1)] dF | _ye0dFd ™ d2F _

At the hot spot/shell interface, thetemperatureis considerably
less than the central hot-spot temperature. Since the tempera-
tureisproportional to dF/dé, one can neglect correctionsof the
order of Tgg/T(r = 0) and look for solutions of Eq. (18),
satisfying dF/d¢ = 0 at the hot-spot radius. The function F is
proportional to the internal energy inside the hot spot and
therefore positive by definition. Thus, the solution of Eq. (18)
satisfying the boundary conditions can be found only when Q
=1/(v + 1), leading to the simplified hot-spot equation

4o 0dF D2 d2F _

1
—&+F
v+1£

Thenumerical solution of suchan equationreguiresthederiva-
tiveat £=0, F'(0). It can be easily shown, however, that all the
physical quantitiesareindependent of thechoiceof F’(0); thus,
without loss of generality, we set F'(0) = 1. The solution of
Eqg. (19) for v = 5/2, F(0) = 0, and F'(0) = 1 is shown in
Fig. 85.2. Observe that dF/d¢ (and therefore T) vanishes at
éo=1.23and F(&y) = 0.70. Defining the hot spot asthe region
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Figure 85.2

Functions F(&) (proportional to the internal energy) and F'(&) (proportional
to the temperature) obtained from the numerical solution of Eq. (19) with
v=5/2, F(0) =0, and F'(0) = 1. The hot spot is defined to be the region with
§<1.23
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with & < &g leads to the following expression of the hot-spot
mass:

Mps = 4mmMyg = 4716 ,i/(v+1)/a_ (20)

The constants a and g can be determined from the initial
conditions applied to Egs. (20), (17), and (9), leading to

v+l
O 3F(&) B CaMps(0) L1
=5 0 = (2
? BAR(0° R0 7 4ng o )

where Ry¢(0), Prs(0), and M,4(0) aretheinitial hot-spot radius,
pressure, and mass, respectively. A short calculation using
Egs. (9), (13), (17), and (20) and the equation of stateyieldsthe
relevant hot-spot parameters [mass, areal density (pR), den-
sity, and temperature] asfunctions of the hot-spot pressureand
radius:

Mps(t) :{ Ms(0)” " + x o oA+

iyt Y
I Al SRt lt) 5 ®g . @

— R _ Mhs(t)
pR'#o o R0 &
- 3Mps(t) F(EO)
P ael)” G €] 2
_ AR(t)
Trs(m ) = hs(rsn’t)’
where
_r-13v(ang)
Xo=7F vy
F(%o)
(25)
29 A
T & o FOFF
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For v=>5/2and I' = 5/3, we find pig = 2.27 and g = 3052.8.
Observethat thehot-spot massincreaseswithtimeat aratethat
depends on the thermal conductivity coefficient. The mass
increaseisdueto the ablation off the shell’sinner surface. The
hot-spot radius and pressure arerelated through Eq. (9), which
can be rewritten by using theinitial conditions, leading to

Re(t)® _ Re(0)"
Rhs(O) “FRH S

A MO RCD

In the absence of alpha-particle heating (D, = 0), Eq. (26)
yields R,sR3L = constant, indicating that the hot spot behaves
like a closed system that is adiabatically heated (PV" = con-
stant, whereVisthevolume). Thisresult is somewhat surpris-
ing because the hot spot is not a closed system since its mass
increases with time. From the energetic point of view, how-
ever, the hot spot is indeed insulated as the heat conduction
losses are recycled into the hot spot via the ablated shell
material. This can be shown by writing the total (internal +
kinetic) energy equation in the conservative form:

20
E%/E— pU2 -

u20

atE_ P H

=0k(T)OF ‘;j OE, (OV). (27)

Using the subsonic flow assumption, we neglect the hot-spot
kinetic energy with respect to the internal energy. Then, after
approximating thefusion cross sectionwith the quadratic form
(ov)=S, T2, Eq. (27) isintegrated over the hot-spot volume
enclosed by the inner shell surface. At the inner surface, the
shell material is cold and the thermal conduction can be
neglected. A straightforward cal culation |eadsto thefol lowing
form of the energy equation:

_ORs[

< (o) + 3R U (Reot) - 5

al
=D, R2R,, (28)

where U(Ryq,t) isthe flow velocity at the shell’sinner surface.
The flow velocity results from the combination of the inner

surface motion and the ablative flow:

U(Rhs:t) = Rus = Va. (29)

where V, is the ablation velocity and Fx’hs scales with the
implosion velocity. Since V, << Ry, theablation velocity can
be neglected, and Eqg. (28) yields the exact solution shown in
Eq. (26). Thus, Egs. (26) and (28) are equivalent forms of the
energy equation. Notice that the heat conduction |osses do not
enter into the global energy balance of the hot spot. Thisis
because the heat flux leaving the hot spot is deposited onto the
shell’s inner surface. A fraction of this energy is transformed
into internal energy of the shell material ablating into the hot
spot. The remaining fraction produces the PdV work done by
the ablated plasma entering the hot spot against the hot-spot
pressure. In other words, the energy |eaving the hot spot inthe
form of heat conductionlossesgoesback intothehot spotinthe
form of internal energy and compression work of the ablated
plasma. Therefore, conductionlossesarenot real energy losses
and do not affect the global energy balance of the hot spot as
shown by Eq. (28). It isimportant to emphasize that the hot-
spot energy is proportional to its pressure and the conduction
losses affect the hot-spot temperature but not its pressure. This
conclusion implies that greater heat conduction losses would
lower the temperature and raise the density (through larger
ablation at the shell’s inner surface), leaving the pressure
(P ~ pT) unaltered.

Equation (26) relates hot-spot radius and pressure. All the
hydrodynamic quantities shown in Egs. (22)—(24) can there-
fore be expressed as functions of the pressure only, using
Eq. (26). Itfollowsthat afully self-consistent implosion model
requires additional equations relating Ppg(t) to the shell's
properties. The coupling betweenthehot spot and the shell will
bediscussed in aforthcoming LLE Review. Here, we consider
Prs as agiven function of time and use the hot-spot analysis
devel opedinthissectionto determinetheablation vel ocity and
density-gradient scale length.

2. Ablation Velocity and Density-Gradient Scale Length

An important result of the analysis carried out in the
previous section concerns the hot-spot mass. Equation (22)
shows that the hot-spot mass increases with time. Its rate of
increase depends on the magnitude of the heat conduction
coefficient ko [here, k(T) =k TV] and the hot-spot pressure.
The ablation velocity at the shell’s inner surface follows by
noticing that the mass ablation rate off the shell, My, must
equal the rate of change of the hot-spot mass My,g. Given the
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hot-spot radius Rys and the shell’s peak density pgng, the
ablationrateis My = 4(&%5%9”%, where V, isthe ablation
velocity. Thus setting M, = My yields the ablation velocity

Mhs

= Mhs 30
ATIRE, Al (30

a

where Mhs can be determined from Eq. (22). Then, using the
m-derivativeof ® torelate T and 1, theablation velocity canbe
written in terms of standard hot-spot and shell parameters

LA & AT

TV FOPFE)” )Rl

where both the central hot-spot temperature and radius depend
only on the hot-spot pressure. Using F'(0) =1 and v=5/2 to
solve Eq. (18) leads to &y = 1.23, F(éy) = 0.7. The ablation
velocity can then be calculated using standard ICF units,
leading to the following simple form:

(15"
RNs pshell

, (32)
h
HM Fg/cm3 N

V,(pm/ns) =6 x103

where RS, ThS, and AhS are the hot-spot radius in um, central
temperatureg in keV, and Coulomb logarithm, and /! isthe
shell’s peak density in g/cm3. Figure 85.3 shows the temporal
evolution of the ablation velocity for a direct-drive NIF cap-
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Figure 85.3

Evolution of the ablation velocity at the shell’s inner surface of a NIF-like
capsule as predicted by Eq. (32) (dashed) and the result of numerical
simulations (solid).
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sule obtained from Eq. (32) and the result of numerical simu-
lations using AMS =5,

In addition to the ablative stabilization, the RT growth rates
arereduced by thewell-known finite-density-gradient effects.
Sincetheablativeflow at theinner shell surfaceissubsonic, the
minimum density-gradient scale length can be calculated us-
ing the well-known isobaric model14 characterized by the
following approximate form of the energy equation:

——ngzo. (33)

Integrating Eqg. (33) and using the continuity of the mass flow
(pU = constant) leads to the following ordinary differential
equation for the density profile near the shell’sinner surface:

B=pr (34

where p=p/pga) is the density normalized to the peak
density in the shell (pg,q) and

-1 AK|(T.
L=t 1 AK(Tora) (35)
Pshell Va

Here Tahal = ARhs(t)/Pshall representsthe temperature calcu-
lated at the peak of the density. Equation (35) isvalid only near
the shell’s inner surface within a distance of the order of the
length Lg. The minimum value of the density-gradient scale
length (L, can be determined by setting to zero the radial
derivative of Eq. (34). A straightforward manipulation yields

(V +1)V+l

Lm = LO Y

(36)

Using v = 5/2 in Eq. (36) and substituting Eq. (32) into
Eqg. (35) leads to the following simple expression of the
density-gradient scale length:

Lim = 6.8 Rug] ARhs(t)/ Oshell Ths(0:1)] 52 (37)

where Py 4(t) is the hot-spot pressure. Figure 85.4 shows the
temporal evolutionof L,,,calculated from Eq. (37) andfromthe
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numerical simulations of aNIF direct-drive capsule. Observe
that the density-gradient scale length is quite smaller than the
hot-spot radius, implying that itsstabilizing effectswill impact
only short-wavelength modes (large I-mode numbers).
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Figure 85.4

Evolution of the density-gradient scale length at the shell’sinner surface of
a NIF-like capsule as predicted by Eq. (37) (dashed) and the result of
numerical simulations (solid).

In the next section, the theory developed in the General
Equations section is used to calculate the hydrodynamic
profiles inside the hot spot and to show how the profiles are
affected by the ablation process.

3. Hot-Spot Profiles

The density, temperature, and velocity profiles inside the
hot spot can be determined easily from thetheory developedin
the Hot-Spot Dynamics section. The theory is based on the
solution of the gas dynamic equations in a Lagrangian form
with m;t as independent variables. All the spatial profiles are
described by the function F(&), where & = am/n?7 for v =5/2.
Instead of the variable &, amore convenient expression of the
profilesshould makeuseof thespatial coordinate F =r/Rqg(t).
The relation between f and & can be found by rewriting
Eqg. (9) using Egs. (26), (17), and (21). A simple manipul ation
yields the following relation:

F3= ;((5?) (38)

All the spatial hot-spot profiles for v = 5/2 can be found by
inverting Eq. (38) and finding & intermsof ; however, since
F(&)isnotanalytical, theinversion must becarried out numeri-
cally, leading to the following approximation for £ and F'(¢):

E=Eo[1—[1-F3]3/5} : (39)
o
(€)= 1-0.1572" (40)

The hot-spot temperature profile follows immediately from
Eq. (24) and Eq. (40) leading to

1- 722

1-0.1512° (1)

Ths(r,t) = Ths(0,t)

When compared with the commonly used profilel
T = To(l— r 2)2/ 7, Eq. (41) isin very good agreement except
near the boundary of thehot spot  =1. Thedifferent behavior
near the hot-spot boundary isrelevant to the cal culation of the
heat flux leaving the hot spot, which is proportional to
[T5/2drAT +—,- The common profile with the power 2/7 yields
afiniteheat flux whiletheprofilegiven by Eq. (41) yields zero
flux. Since the hot-spot boundary represents the cold shell’s
inner surface, the heat flux cannot propagate through the shell
becausetheheat conductivity isnegligiblethroughout the shell
material. The correct temperature profiles must therefore pro-
duceavanishing heat flux at the hot-spot boundary asindicated
by Eq. (41). Asmentioned in the General Equations section,
the heat flux is absorbed on the shell’s inner surface by the
material that ablates into the hot spot.

The hot-spot density profile follows from Eq. (41) and the
isobaric assumption, leading to

1-0.15r2

LR

Prs(r,1) = Pns(0,1)

where the ad hoc term & 0.850p(0,t)/ Pghar <<1 has been
included to remove the singularity at f =1, which arises from
thezero shell temperature approximation used to solvethe hot-
spot equation [Eq. (16)].

Thevelocity profile can bedetermined fromthelLagrangian
equation u = d;r and Eq. (9). Using the definition of the abla-
tionvelocity givenin Eq. (30), the hot-spot vel ocity profilehas
the form
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u(r,t):rAI'?hS—ﬂ Penel :!—2 (43)

where &(7) and png(r.t) are given in Eqgs. (38) and (43),
respectively. During the deceleration phase, the velocity is
negative (i.e., directed in the negative r-direction) and the
velocity profile has a minimum (i.e., a maximum for the
absolute value of u) due to the blowoff of the material ablated
off theshell [thesecondtermin Eq. (43)]. Theminimum occurs
at theradial position

. 1+06V,

= LU 44
14072, (44

where Vi, = pgreli Va/ phs(O,t)|Rhs|. Near stagnation, \, >>1,
fmin = 0.8, and the velocity at the point of minimum is ap-
proximately

Pshell 45
phs(rmimt) 1 9

U(Frmint) = 0.8 Rys — 0.6 V,
where png(fmin,t) =1.46 pns(0,t) isthedensity at thelocation
of minimum velocity. Observethat Eq. (45) isauseful tool for
calculating the ablation velocity near stagnation from the
numerical simulations because the velocity Unip = u(fmm,t),
and the densities Ppg(fimin.t) and pg,g; can be easily deter-
mined from the codes’ output, while R.g issmall and can be
neglected.

Growth Rates of the Deceleration RT I nstability

During the continuous decel eration phase after the interac-
tion of the shell with the return shock, the shell’sinner surface
isunstable to the RT instability and any small perturbation in
the hydrodynamic quantitieswould grow rapidly. The general
formuladerivedin Ref. 10yieldsthegrowthrateof theablative
RT asafunction of theablation velocity V,, the shell decelera-
tion g, the power index for thermal conduction v=5/2, andthe
mode wave number k=I/R,g for | >> 1. Since al such
guantities are functions of time, the exponential growth of the
linear perturbation occurs for sufficiently largel’s only when
the typical growth time is shorter than the characteristic time
scale of the one-dimensional evolution. In order to verify the
theoretical results, we have carried out several 2-D single-
mode simulations.
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The 1-D code LILAC’s!® output for the NIF-like capsule at
9.3 ns, characterizing the beginning of the coasting phase, was
later used asinput for ahigh-resol ution Eulerian hydrocode.16
Thelatter solvesthe singlefluid mass, momentum, and energy
equations, including Spitzer conduction, local alpha deposi-
tion, and bremsstrahlung on avery fine grid. The high resolu-
tion is needed to correctly simulate the growth of short-
wavelength modes on the shell’sinner surface. Asidefromthe
bremsstrahlung losses, the code solves the same single fluid
model on which the theory is based, providing a robust check
of the theoretical results. The RT evolution isinvestigated by
introducing asmall-amplitude, 2-D perturbation of the hydro-
dynamic variables at about 200 ps before stagnation when the
continuous decel eration phase begins.

For adirect-drive NIF-like capsul e the decel eration phase
occurs over an interval of approximately 200 ps. During that
time (see Fig. 85.1) the deceleration varies from a few hun-
dreds um/ns? to about 4000 um/ns?, the ablation velocity
increases from ~13 to ~25 um/ns, the density-gradient scale
length varies between 1 to 2 um, and the hot-spot radius
reducesfrom 100 um to about 55 um. The RT growth becomes
significant during the last 100 ps before stagnation when the
acceleration is large, and the hot-spot radius decreases from
75 to 55 um. The growth rate of large | modes can be deter-
mined using the planar results of Ref. 10 derived for the
acceleration-phase RT. For a NIF-like capsule during the
continuous deceleration phase in the 100-ps interval before
stagnation <g> = 3100 pm/ns?, <V,> = 18 um/ns, <L,>
= 1.5 um, and <R,g> = 65 um, leading to a Froude number
Fr=0.5,where Fr = Va2 /oL andLy=0.12L . Using Eq. (23)
and Fig. 6 of Ref. 7, we determine the appropriate growth-rate
formula:

e L4 k(Va), (46)

where k = I/R,sfor largeI’s.

Figure 85.5 compares the unstable spectrum calculated
using Eq. (46) with R,g = 65 um, the classical RT spectrum
without ablation [Eq. (1) with L = L], and the results of
numerical simulations. Except for | = 2,4 (open circles), the
numerical growth rates are calculated in the 100-ps time
interval before stagnation. The simulations of modes| = 2,4
(open circles) show a clear exponential growth only after the
shell stagnation time, and their numerical growth rateiscal cu-
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lated during the 50-psinterval after stagnation. It isimportant
toobservethat the planar theory agreeswell with thenumerical
resultsonly for | = 20. Low | modesseemto grow faster (almost
classically) than predicted by Eq. (46), indicating that conver-
gence effects may reduce the ablative stabilization at low .
Furthermore, Fig. 85.5 shows that the finite ablation velocity
off the shell’sinner surfaceinducesacutoff inthe RT unstable
spectrum, suppressing short-wavelength modes with | > 90.
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Figure 85.5

Growth rate versusmode number for the decel eration-phase RT of aNIF-like
capsule as predicted by this work [Eq. (46) (solid)], by the classical fitting
formula [Eq. (1)] with L = L, (dashed), and by the results of numerical
simulations (open circles). The classical formula overestimates the growth
rate of the instability for | = 10.

Conclusion

In conclusion, an analytic model of the hot-spot dynamics
has been developed, and all hot-spot profiles and hydrody-
namic quantities relevant to the decel eration-phase instability
have been determined. We have shown that the ablative flow
off the shell’sinner surface playsacrucial rolein reducing the
growth rate and suppressing short-wavelength modes in the
deceleration-phase RT instability. The ablation velocity and
thedensity-gradient scalelength have been calculated interms
of standard hot-spot parameters. Using the theory of Ref. 10,
thegrowth rateformulahasbeen determined. Detail ed numeri-
cal simulationshave confirmed thetheoretical resultsand have
shown RT suppression at short wavelengths. Calculations of
the unstable spectrum of a direct-drive NIF-like capsule?
during thedecel eration phase haveindicated that theinstability
is suppressed for mode numbers | > 90.
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