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Introduction
In inertial confinement fusion1 (ICF), a spherical shell of
cryogenic deuterium and tritium (DT) filled with DT gas is
accelerated by direct laser irradiation (direct drive) or x-rays
produced by a high-Z enclosure (indirect drive). In direct-drive
ICF, the laser pulse starts from a constant, low-intensity foot
designed to drive a uniform shock through the shell. After the
shock breaks out on the shell’s inner surface, the latter expands
forward, launching a shock in the gas and a rarefaction wave in
the shell. As the rarefaction wave travels across the shell, the
shell’s outer surface moves at approximately constant velocity.
When the rarefaction wave reaches the shell’s outer surface,
the latter starts accelerating and the so-called acceleration
phase begins. At about the shock breakout time, the laser
power begins to rise, first slowly and then more rapidly to keep
the shell close to the shock front traveling inside the gas. A
second shock originating within the shell is launched during
the initial pulse rise and merges with the first shock before
reaching the center of the capsule. The acceleration phase ends
when the laser is turned off and the shell starts traveling at
approximately constant velocity. Standard direct-drive pulse
designs make use of such a sequence of two shocks merging
into one, whereas the latest pulse designs of indirect-drive ICF
make use of a sequence of four shocks2 coalescing into one
before reaching the center.

In both direct- and indirect-drive ICF, the single shock
resulting from the multiple-shock coalescence travels in the
gas in the form of a strong shock; i.e., ∆P/Pb >> 1, where ∆P
is the pressure jump across the shock and Pb is the gas pressure
before the shock. Such a shock is reflected off the center of the
capsule (return shock) and subsequently off the incoming inner
shell surface, which in turn is impulsively decelerated. The
shock reflected off the shell travels toward the center, where it
is reflected again and subsequently reflected a second time
from the shell. At each reflection off the shell, the latter is
impulsively decelerated and the shock gets weaker until the
pressure jump across the shock front is smaller than the
pressure before the shock (∆P/Pb < 1). The time interval
corresponding to the multiple shock reflections is referred to as
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the impulsive deceleration phase. Typically, the reflected shock
becomes weak after the first or second reflection off the shell.
At this point the material enclosed by the inner shell surface
develops a fairly uniform pressure profile and is referred to as
the hot spot. After the return shock reflects off the shell, the hot
spot is formed, and its pressure is large enough that the shell
velocity is lower than the hot-spot sound speed, i.e., the flow
is subsonic. When the hot spot is formed, the shell is deceler-
ated in a continuous (not impulsive) manner while acting like
a piston on the hot spot. Such a continuous slowing down of the
shell up to the stagnation point occurs over a period of a few
hundred picoseconds and is referred to as the continuous
deceleration phase. Figure 85.1 shows the time evolution of
the deceleration g of a shell designed for direct-drive ignition3

on the National Ignition Facility (NIF). The time t = 0 ns
represents the stagnation point, and the continuous decelera-
tion starts at about 200 ps before stagnation. The NIF capsule
is a 345-µm-thick shell of DT ice with an inner radius of
1350 µm. The shell is filled with DT gas at a temperature of
18 K and a density of 2 × 10−4 g/cm3. During the deceleration
phase, the hot-spot pressure, density, and temperature increase
until reaching the ignition conditions. If the shell is sufficiently
dense, the ignited hot spot will trigger a propagating burn wave

Figure 85.1
Time evolution of the inner-shell-surface deceleration for a direct-drive NIF
capsule. Time t = 0 is the stagnation time.
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in the shell and a significant fraction of the shell mass will
undergo thermonuclear burn if the shell’s areal density exceeds
a few g/cm2.

It is well known that the outer shell surface is unstable to the
Rayleigh–Taylor (RT) instability during the acceleration phase;
however, because of mass ablation, the instability growth rates
are significantly reduced4–10 with respect to their classical
values. The theory of the RT instability in an accelerated planar
foil has been carried out in Refs. 6–9, where the growth rate’s
dependence on the ablation velocity Va, density-gradient scale
length Lm = ′( )[ ]−min ,ρ ρ 1  front acceleration g, and power
index for thermal conduction ν (here the thermal conductivity
is approximated by κ ≈ κ0Tν) is calculated by analytically
solving the conservation equations. In Refs. 6–9, the stability
of long (kLm < 1) and short (kLm > 1) wavelength modes is
investigated for large and small Froude numbers (Fr), where
Fr V gLa= 2

0  and L Lm0
11= +( ) +ν νν ν . It is found that

short-wavelength modes are completely suppressed when
Fr > 1 and the unstable spectrum exhibits a cutoff at long
wavelengths, i.e., kcutoff Lm < 1. Instead, when Fr < 1, the cut-
off occurs at short wavelengths (kcutoff Lm ~ 1/Fr1/3), and both
long- and short-wavelength modes (up to the cutoff) are
unstable. The stability analysis in Refs. 8 and 9 has been carried
out separately for large and small Froude numbers as well as
long and short wavelengths. In Ref. 10 the different growth-
rate solutions have been combined into a single formula that
asymptotically matches those solutions in the different param-
eter ranges.

Despite the significant growth-rate reduction induced by
mass ablation and finite-density-gradient scale-length effects,
the amplification of surface perturbations can be substantial,
so the thickness of ICF shells must be chosen to prevent the
shell from breaking up when the RT bubble amplitude equals
the shell thickness.

Even when the shell integrity is preserved during the accel-
eration phase, the hot-spot ignition can be quenched11 by the
deceleration-phase RT instability. The latter is the instability of
the inner shell surface that occurs when the shell is decelerated
by the high pressure building up inside the hot spot. The
deceleration-phase RT causes the cold shell material to pen-
etrate and cool the hot spot, preventing it from achieving
ignition conditions. Furthermore, if the inner-surface perturba-
tion becomes nonlinear, a fraction of the shell’s kinetic energy
is used to feed the lateral shell motion induced by the instabil-
ity, reducing the compression of the hot spot. Typical seeds for
the deceleration-phase RT are the surface nonuniformities that

feed through the shell from the outer surface during the
acceleration-phase instability.

It is known that the deceleration-phase RT is classical12

and all modes are unstable. The finite-density-gradient scale
length13 reduces the instability growth rates, which can be
approximated by the classical fitting formula1

γ dec ≈
+
kg

kL1
, (1)

where L is the shell’s density-gradient scale length and k is the
perturbation wave number approximately equal to l/R with R
being the hot-spot radius and l the mode number. Observe that
Eq. (1) indicates that all modes are unstable, with the fastest-
growing modes having short wavelengths (kL >> 1) and
growth rates γ dec kL g L>>( )1 � .  As described in Ref. 13,
the finite-density-gradient scale length is produced by the
thermal conduction inside the hot spot. It is shown in this
article that mass ablation from the shell’s inner surface signifi-
cantly reduces the deceleration RT growth rates, leading to
much lower growth rates than predicted by Eq. (1) and to a
cutoff in the unstable spectrum. Mass ablation is caused by the
heat flux leaving the hot spot and depositing on the shell’s inner
surface. We have calculated the ablation velocity and the
shell’s density-gradient scale length during the deceleration
phase. Then, using the RT theory of Ref. 10, we have calculated
the growth rates and compared them with the results of numeri-
cal simulations. For the direct-drive NIF-like capsule under
consideration,3 the cutoff mode number for the deceleration-
phase RT is approximately lcutoff ≈ 90.

The remainder of this article is divided into two major
sections that describe the hot-spot dynamics and the linear
stability. The hot-spot model is valid from the beginning of the
continuous deceleration phase (after the shock reflection off
the shell) until the onset of the ignition process. The evolution
of the hot-spot radius, mass, temperature, and density is calcu-
lated in terms of initial conditions and hot-spot pressure. The
second section is devoted to the hydrodynamic stability analy-
sis of the shell during the continuous deceleration phase. The
growth rate of the RT instability is derived, including finite-
density-gradient scale length and ablation velocity.

Hot-Spot Dynamics
The hot spot is a low-density plasma heated by the shock

and by the PdV work of the cold, dense surrounding shell. Its
mass is made of the ionized DT gas and the plasma ablated off



THEORY OF THE HOT-SPOT DYNAMICS AND DECELERATION-PHASE INSTABILITY OF IMPLODING ICF CAPSULES

LLE Review, Volume 85 3

the inner shell surface. The hot-spot dynamics is governed by
the mass, momentum, and energy conservation equations. The
energy equation must include the electronic thermal conduc-
tion and alpha-particle energy deposition. Bremsstrahlung
radiation energy losses are neglected in this model because
they add great complexity to the mathematical solution and
their contribution is typically smaller than the mechanical
work and/or the fusion power. The magnitude of the radiation
losses is larger than the fusion power for temperatures below
4.4 keV, when the PdV work rate is typically greater than both
radiation and fusion power. Thus at such low temperatures both
radiation losses and alpha power are negligible with respect to
the compression work rate. The PdV work rate decreases near
the shell’s stagnation point, where higher temperatures are
reached within the hot spot. If such temperatures are well
above 4.4 keV, the alpha-particle power is greater than the
radiation losses and the bremsstrahlung term can again be
neglected in the energy equation. The model described in this
section may not apply to capsules that do not ignite or with
small ignition margins (small mechanical work rate and low
final temperatures) as their evolution can be significantly
affected by radiation losses.

This model is expected to predict the main characteristics of
the deceleration phase up to the onset of ignition. The actual
ignition process in the hot spot is not accurately modeled
because the alpha-particle energy is assumed to be locally
deposited within the hot spot. Instead, the alpha-particle mean
free path is typically of the same order of magnitude as the hot-
spot radius, and a fraction of the alpha particles leaves the hot
spot and is deposited on the shell’s inner surface. Those alpha
particles trigger the propagation of a burn wave in the cold,
dense shell, which burns until it disassembles. The thermo-
nuclear burn wave propagation is not described by our model
and requires a diffusion (or kinetic) treatment of the alpha-
particle population. Detailed analysis of the burn wave propa-
gation and the effects of the RT instability on the capsule gain
can be found in Ref. 11.

Even though the local deposition approximation used here
is strictly valid only when all the alpha particles are absorbed
within the hot spot, we artificially include the effect of alpha-
particle diffusion by adding a multiplicative factor θ ≤ 1 to the
alpha power term. When θ < 1, one should also include the
alpha power deposited at the inner shell surface due to the
1–θ fraction of leaking alpha particles. Such a contribution is
not included in the derivation of the hot-spot profiles, ablation
velocity, and density-gradient scale length because an analytic
solution of the conservation equations could not be found.

Thus, an additional limitation of this model is that the fraction
of alpha particles leaving the hot spot is small compared to the
fraction absorbed.

In conclusion, the model described below is suitable to
describe the deceleration phase up to the onset of ignition, but
it does not include the relevant physics pertaining to the
ignition process or the burn wave propagation. We speculate
that most of the RT instability growth occurs before ignition
takes place when our model captures the essential physics of
the hot-spot dynamics.

1. General Equations
The model is based on the Lagrangian form of the equations

of motion as the boundary of the hot spot moves before and
after stagnation. The Lagrangian equations of motion in spheri-
cal geometry can be written in the following form:

1 1

3

3
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m
, (2)
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, (4)

where cv = 3/2 A is the specific heat at constant volume,
A m Zi= +( )1 ,  mi and Z are the ion mass and atomic number,
respectively (Z = 1 for DT), Γ is the ratio of specific heats or
adiabatic index (Γ = 5/3 for a monoatomic gas), κ(T) = κ0Tν

is the Spitzer thermal conductivity, ν = 5/2, Eα = 3.5 MeV, θ is
the absorbed alpha-particle fraction, and σv  is the fusion
reaction rate. The independent variable m is proportional to the
mass within the radius r:

m x t x dxr= ( )∫ ρ , .2
0 (5)

Equation (4) has been derived by using the standard ideal gas
equation of state P = ρT/A and by neglecting bremsstrahlung
losses. To solve the conservation equations, we adopt the
subsonic flow ordering, which represents a good approxima-
tion after the shock transient. We let t ~ R/Cs (or t ~ R/U),
r ~ R, and U ~ ∈ Cs, where ∈  << 1 represents the flow Mach
number. We find the solution of Eqs. (2)–(4) by a formal
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expansion in powers of ∈ . By inspection, Eq. (3) reduces to
∂ = ∈( )mP O P m ,  yielding

P P t� hs( ) (6)

and reproducing the well-known flat pressure approximation.

The density in the energy equation can be eliminated by
using the equation of state, and the fusion rate can be approxi-
mated with a quadratic term σ αv = S T 2.  Such an approxima-
tion is valid as long as 5 < T < 25 keV, which is a temperature
range relevant to ICF ignition experiments. After a straightfor-
ward manipulation, the energy equation can be rewritten in the
following form:

c
P t

T t
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P t
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Equation (7) can be further simplified by defining the variables
Π Γ≡ −T Phs

1 1  and

τ κ τ β νβ= ′( ) ′ +∫ = −( ) −3 3 1 1

3

4 3

1 3
0

00A c
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t
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Γ

Γv
hs ,    , (8)

where τ0 is a constant to be determined by the initial condi-
tions. Using Eq. (2) to determine the relation between the
volume within the radius r and Π, one finds

r
AP t

m dmm3
1 0

3=
( )

≡ ′( ) ′∫
hs

Γ Φ Φ Π,      , ,τ (9)

and the energy equation can be rewritten in the following
simple form:

∂
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= ∂
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The next step is to integrate Eq. (10) between 0 and m and to
eliminate Π, leading to the following equation for Φ:
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+ ( )
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Observe that the α particle term on the right-hand side of
Eq. (12) can be combined with the left-hand side by defining
the new dependent (Ψ) and independent (η) variables:
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where t = t0 represents the beginning of the continuous decel-
eration phase,

D
E S

Z
α

α αθ= −
+( )

Γ
Γ

1

4 1 2 , (15)

and η0 is a new constant. After a short calculation, Eq. (12) can
be rewritten in the following simple form:
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A self-similar solution of Eq. (13) can be found by setting
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where ξ and F(ξ) are dimensionless and a is a constant with the
dimensions of ηΩ/m to be determined using the initial condi-
tions. Substituting Eq. (17) into Eq. (16) yields the following
ordinary differential equation for F(ξ):

3 1 1

3 1
04 3

1 2

2

− +( )[ ]
+

+ +
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=
−Ω

Ω
ν

ν
ξ

ξ ξ ξ

ν
F
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d
F

dF

d

d F

d
. (18)

At the hot spot/shell interface, the temperature is considerably
less than the central hot-spot temperature. Since the tempera-
ture is proportional to dF/dξ, one can neglect corrections of the
order of Tshell/T(r = 0) and look for solutions of Eq. (18),
satisfying dF/dξ = 0 at the hot-spot radius. The function F is
proportional to the internal energy inside the hot spot and
therefore positive by definition. Thus, the solution of Eq. (18)
satisfying the boundary conditions can be found only when Ω
= 1/(ν + 1), leading to the simplified hot-spot equation
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d
. (19)

The numerical solution of such an equation requires the deriva-
tive at ξ = 0, F�(0). It can be easily shown, however, that all the
physical quantities are independent of the choice of F�(0); thus,
without loss of generality, we set F�(0) = 1. The solution of
Eq. (19) for ν = 5/2, F(0) = 0, and F�(0) = 1 is shown in
Fig. 85.2. Observe that dF/dξ (and therefore T) vanishes at
ξ0 = 1.23 and F(ξ0) = 0.70. Defining the hot spot as the region

with ξ ≤ ξ0 leads to the following expression of the hot-spot
mass:

M m ahs hs= = +( )4 4 0
1 1π πξ η ν . (20)

The constants a and η0 can be determined from the initial
conditions applied to Eqs. (20), (17), and (9), leading to
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where Rhs(0), Phs(0), and Mhs(0) are the initial hot-spot radius,
pressure, and mass, respectively. A short calculation using
Eqs. (9), (13), (17), and (20) and the equation of state yields the
relevant hot-spot parameters [mass, areal density (ρR), den-
sity, and temperature] as functions of the hot-spot pressure and
radius:
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(25)Figure 85.2
Functions F(ξ) (proportional to the internal energy) and F�(ξ) (proportional
to the temperature) obtained from the numerical solution of Eq. (19) with
ν = 5/2, F(0) = 0, and F�(0) = 1. The hot spot is defined to be the region with
ξ ≤ 1.23.
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For ν = 5/2 and Γ = 5/3, we find µ0 = 2.27 and χ0 = 3052.8.
Observe that the hot-spot mass increases with time at a rate that
depends on the thermal conductivity coefficient. The mass
increase is due to the ablation off the shell’s inner surface. The
hot-spot radius and pressure are related through Eq. (9), which
can be rewritten by using the initial conditions, leading to

R t

R

P

P t
D P tt
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hs

hs

hs
hs

( )
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
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3
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0

0
0

Γ

exp .α (26)

In the absence of alpha-particle heating (Dα = 0), Eq. (26)
yields P Rhs hs constant,3Γ =  indicating that the hot spot behaves
like a closed system that is adiabatically heated (PVΓ = con-
stant, where V is the volume). This result is somewhat surpris-
ing because the hot spot is not a closed system since its mass
increases with time. From the energetic point of view, how-
ever, the hot spot is indeed insulated as the heat conduction
losses are recycled into the hot spot via the ablated shell
material. This can be shown by writing the total (internal +
kinetic) energy equation in the conservative form:
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Using the subsonic flow assumption, we neglect the hot-spot
kinetic energy with respect to the internal energy. Then, after
approximating the fusion cross section with the quadratic form
σ αv � S T 2, Eq. (27) is integrated over the hot-spot volume

enclosed by the inner shell surface. At the inner surface, the
shell material is cold and the thermal conduction can be
neglected. A straightforward calculation leads to the following
form of the energy equation:

d

dt
P R R P U R t

dR
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D P R

hs hs hs hs hs
hs

hs hs

3 2
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where U(Rhs,t) is the flow velocity at the shell’s inner surface.
The flow velocity results from the combination of the inner

surface motion and the ablative flow:

U R t R Vahs hs, ˙ ,( ) = − (29)

where Va is the ablation velocity and Ṙhs scales with the
implosion velocity. Since V Ra << ˙ ,hs  the ablation velocity can
be neglected, and Eq. (28) yields the exact solution shown in
Eq. (26). Thus, Eqs. (26) and (28) are equivalent forms of the
energy equation. Notice that the heat conduction losses do not
enter into the global energy balance of the hot spot. This is
because the heat flux leaving the hot spot is deposited onto the
shell’s inner surface. A fraction of this energy is transformed
into internal energy of the shell material ablating into the hot
spot. The remaining fraction produces the PdV work done by
the ablated plasma entering the hot spot against the hot-spot
pressure. In other words, the energy leaving the hot spot in the
form of heat conduction losses goes back into the hot spot in the
form of internal energy and compression work of the ablated
plasma. Therefore, conduction losses are not real energy losses
and do not affect the global energy balance of the hot spot as
shown by Eq. (28). It is important to emphasize that the hot-
spot energy is proportional to its pressure and the conduction
losses affect the hot-spot temperature but not its pressure. This
conclusion implies that greater heat conduction losses would
lower the temperature and raise the density (through larger
ablation at the shell’s inner surface), leaving the pressure
(P ~ ρT) unaltered.

Equation (26) relates hot-spot radius and pressure. All the
hydrodynamic quantities shown in Eqs. (22)–(24) can there-
fore be expressed as functions of the pressure only, using
Eq. (26). It follows that a fully self-consistent implosion model
requires additional equations relating Phs(t) to the shell’s
properties. The coupling between the hot spot and the shell will
be discussed in a forthcoming LLE Review. Here, we consider
Phs as a given function of time and use the hot-spot analysis
developed in this section to determine the ablation velocity and
density-gradient scale length.

2. Ablation Velocity and Density-Gradient Scale Length
An important result of the analysis carried out in the

previous section concerns the hot-spot mass. Equation (22)
shows that the hot-spot mass increases with time. Its rate of
increase depends on the magnitude of the heat conduction
coefficient κ0 [here, κ κ νT T( ) = 0 ] and the hot-spot pressure.
The ablation velocity at the shell’s inner surface follows by
noticing that the mass ablation rate off the shell, ˙ ,Ma  must
equal the rate of change of the hot-spot mass ˙ .Mhs  Given the
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hot-spot radius Rhs and the shell’s peak density ρshell, the
ablation rate is ˙ ,M R Va a= 4 2π ρhs shell  where Va is the ablation
velocity. Thus setting ˙ ˙M Ma = hs yields the ablation velocity

V
M

Ra =
˙

,hs

hs shell4 2π ρ
(30)

where Ṁhs  can be determined from Eq. (22). Then, using the
m-derivative of Φ to relate T and η, the ablation velocity can be
written in terms of standard hot-spot and shell parameters

V
F F

A T t

t R ta = −( )
+( ) ′( ) ( )

( )
( ) ( )

3 1

1 0

00

0
1 3

0Γ
Γν

ξ
ξ

κ
ρν

ν
hs

shell hs

,
, (31)

where both the central hot-spot temperature and radius depend
only on the hot-spot pressure. Using F�(0) = 1 and ν = 5/2 to
solve Eq. (18) leads to ξ0 = 1.23, F(ξ0) = 0.7. The ablation
velocity can then be calculated using standard ICF units,
leading to the following simple form:

V
T

Ra
g

µ
ρµ

m ns keV
hs

m
hs

cm
shell hs( ) = ×

( )
6 103

5 2

3 Λ
, (32)

where Rhs, Ths, and Λhs are the hot-spot radius in µm, central
temperature g in keV, and Coulomb logarithm, and ρshell is the
shell’s peak density in g/cm3. Figure 85.3 shows the temporal
evolution of the ablation velocity for a direct-drive NIF cap-

sule obtained from Eq. (32) and the result of numerical simu-
lations using Λhs = 5.

In addition to the ablative stabilization, the RT growth rates
are reduced by the well-known finite-density-gradient effects.
Since the ablative flow at the inner shell surface is subsonic, the
minimum density-gradient scale length can be calculated us-
ing the well-known isobaric model14 characterized by the
following approximate form of the energy equation:

∇ ( )
−

− ∇





=⋅ v
Γ
Γ
P t

Ths

1
0κ . (33)

Integrating Eq. (33) and using the continuity of the mass flow
(ρU = constant) leads to the following ordinary differential
equation for the density profile near the shell’s inner surface:

1 1

0ˆ

ˆ
ˆ

ˆ
,

ρ
ρ ρ

ρν∂
∂

=
−( )

r L
(34)

where ρ̂ ρ ρ= shell  is the density normalized to the peak
density in the shell (ρshell) and

L
A T

Va
0

1= − ( )Γ
Γ

κ
ρ

shell

shell
. (35)

Here T AP tshell hs shell= ( ) ρ  represents the temperature calcu-
lated at the peak of the density. Equation (35) is valid only near
the shell’s inner surface within a distance of the order of the
length L0. The minimum value of the density-gradient scale
length (Lm) can be determined by setting to zero the radial
derivative of Eq. (34). A straightforward manipulation yields

L Lm = +( ) +

0

11ν
ν

ν

ν . (36)

Using ν = 5/2 in Eq. (36) and substituting Eq. (32) into
Eq. (35) leads to the following simple expression of the
density-gradient scale length:

L R AP t T tm = ( ) ( )[ ]6 8 0
5 2

. , ,hs hs shell hsρ (37)

where Phs(t) is the hot-spot pressure. Figure 85.4 shows the
temporal evolution of Lm calculated from Eq. (37) and from the
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Figure 85.3
Evolution of the ablation velocity at the shell’s inner surface of a NIF-like
capsule as predicted by Eq. (32) (dashed) and the result of numerical
simulations (solid).
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numerical simulations of a NIF direct-drive capsule. Observe
that the density-gradient scale length is quite smaller than the
hot-spot radius, implying that its stabilizing effects will impact
only short-wavelength modes (large l-mode numbers).

1

2

3

L
m

 (
mm

)

0

TC5424
Time (ns)

–0.2 –0.1 0.0

Figure 85.4
Evolution of the density-gradient scale length at the shell’s inner surface of
a NIF-like capsule as predicted by Eq. (37) (dashed) and the result of
numerical simulations (solid).

In the next section, the theory developed in the General
Equations section is used to calculate the hydrodynamic
profiles inside the hot spot and to show how the profiles are
affected by the ablation process.

3. Hot-Spot Profiles
The density, temperature, and velocity profiles inside the

hot spot can be determined easily from the theory developed in
the Hot-Spot Dynamics section. The theory is based on the
solution of the gas dynamic equations in a Lagrangian form
with m,t as independent variables. All the spatial profiles are
described by the function F(ξ), where ξ = am/η2/7 for ν = 5/2.
Instead of the variable ξ, a more convenient expression of the
profiles should make use of the spatial coordinate ˆ .r r R t≡ ( )hs
The relation between r̂ and ξ can be found by rewriting
Eq. (9) using Eqs. (26), (17), and (21). A simple manipulation
yields the following relation:

ˆ .r
F

F
3

0
= ( )

( )
ξ
ξ

(38)

All the spatial hot-spot profiles for ν = 5/2 can be found by
inverting Eq. (38) and finding ξ in terms of ˆ;r  however, since
F(ξ) is not analytical, the inversion must be carried out numeri-
cally, leading to the following approximation for ξ and F�(ξ):

ξ ξ≈ − −[ ]{ }0
3 3 5

1 1 ˆ ,r (39)

′( ) ≈
−( )

−
F

r

r
ξ

1

1 0 15

2 2 5

2

ˆ

. ˆ
. (40)

The hot-spot temperature profile follows immediately from
Eq. (24) and Eq. (40) leading to

T r t T t
r

rhs hs, ,
ˆ

. ˆ
.( ) ≈ ( )

−( )
−

0
1

1 0 15

2 2 5

2 (41)

When compared with the commonly used profile1

T T rc = −( )0
2 2 7

1 ˆ ,  Eq. (41) is in very good agreement except
near the boundary of the hot spot ˆ .r ≈ 1  The different behavior
near the hot-spot boundary is relevant to the calculation of the
heat flux leaving the hot spot, which is proportional to
T d Tr r

5 2
1ˆ ˆ .[ ] =  The common profile with the power 2/7 yields

a finite heat flux while the profile given by Eq. (41) yields zero
flux. Since the hot-spot boundary represents the cold shell’s
inner surface, the heat flux cannot propagate through the shell
because the heat conductivity is negligible throughout the shell
material. The correct temperature profiles must therefore pro-
duce a vanishing heat flux at the hot-spot boundary as indicated
by Eq. (41). As mentioned in the General Equations section,
the heat flux is absorbed on the shell’s inner surface by the
material that ablates into the hot spot.

The hot-spot density profile follows from Eq. (41) and the
isobaric assumption, leading to

ρ ρhs hsr t t
r

r
, ,

. ˆ

ˆ
,( ) ≈ ( ) −

−( ) + ∈
0

1 0 15

1

2

2 2 5 (42)

where the ad hoc term ∈≡ ( ) <<0 85 0 1. ,ρ ρhs shellt  has been
included to remove the singularity at ˆ ,r =1  which arises from
the zero shell temperature approximation used to solve the hot-
spot equation [Eq. (16)].

The velocity profile can be determined from the Lagrangian
equation u = ∂tr and Eq. (9). Using the definition of the abla-
tion velocity given in Eq. (30), the hot-spot velocity profile has
the form
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u r t rR
r

r t

V

r
a, ˆ ˙ ˆ

, ˆ
,( ) = − ( )

( )hs
shell

hs

ξ
ξ

ρ
ρ0

2
(43)

where ξ r̂( ) and ρhs(r,t) are given in Eqs. (38) and (43),
respectively. During the deceleration phase, the velocity is
negative (i.e., directed in the negative r-direction) and the
velocity profile has a minimum (i.e., a maximum for the
absolute value of u) due to the blowoff of the material ablated
off the shell [the second term in Eq. (43)]. The minimum occurs
at the radial position

ˆ . ˆ

. ˆ ,minr
V

V
b

b
≈ +

+
1 0 6

1 0 72
(44)

where ˆ , ˙ .V V t Rb a= ( )ρ ρshell hs hs0  Near stagnation, ˆ ,Vb >>1
ˆ .minr ≈ 0 8, and the velocity at the point of minimum is ap-

proximately

u r t R V
r taˆ , . ˙ .

,
,min

min
( ) ≈ − ( )0 8 0 6hs

shell

hs

ρ
ρ

(45)

where ρ ρhs hsˆ , . ,minr t t( ) ≈ ( )1 46 0  is the density at the location
of minimum velocity. Observe that Eq. (45) is a useful tool for
calculating the ablation velocity near stagnation from the
numerical simulations because the velocity u u r tmin minˆ , ,= ( )
and the densities ρhs ˆ ,minr t( )  and ρshell can be easily deter-
mined from the codes’ output, while Ṙhs is small and can be
neglected.

Growth Rates of the Deceleration RT Instability
During the continuous deceleration phase after the interac-

tion of the shell with the return shock, the shell’s inner surface
is unstable to the RT instability and any small perturbation in
the hydrodynamic quantities would grow rapidly. The general
formula derived in Ref. 10 yields the growth rate of the ablative
RT as a function of the ablation velocity Va, the shell decelera-
tion g, the power index for thermal conduction ν = 5/2, and the
mode wave number k l R≈ hs  for l >> 1. Since all such
quantities are functions of time, the exponential growth of the
linear perturbation occurs for sufficiently large l’s only when
the typical growth time is shorter than the characteristic time
scale of the one-dimensional evolution. In order to verify the
theoretical results, we have carried out several 2-D single-
mode simulations.

The 1-D code LILAC’s15 output for the NIF-like capsule at
9.3 ns, characterizing the beginning of the coasting phase, was
later used as input for a high-resolution Eulerian hydrocode.16

The latter solves the single fluid mass, momentum, and energy
equations, including Spitzer conduction, local alpha deposi-
tion, and bremsstrahlung on a very fine grid. The high resolu-
tion is needed to correctly simulate the growth of short-
wavelength modes on the shell’s inner surface. Aside from the
bremsstrahlung losses, the code solves the same single fluid
model on which the theory is based, providing a robust check
of the theoretical results. The RT evolution is investigated by
introducing a small-amplitude, 2-D perturbation of the hydro-
dynamic variables at about 200 ps before stagnation when the
continuous deceleration phase begins.

For a direct-drive NIF-like capsule the deceleration phase
occurs over an interval of approximately 200 ps. During that
time (see Fig. 85.1) the deceleration varies from a few hun-
dreds µm/ns2 to about 4000 µm/ns2, the ablation velocity
increases from ~13 to ~25 µm/ns, the density-gradient scale
length varies between 1 to 2 µm, and the hot-spot radius
reduces from 100 µm to about 55 µm. The RT growth becomes
significant during the last 100 ps before stagnation when the
acceleration is large, and the hot-spot radius decreases from
75 to 55 µm. The growth rate of large l modes can be deter-
mined using the planar results of Ref. 10 derived for the
acceleration-phase RT. For a NIF-like capsule during the
continuous deceleration phase in the 100-ps interval before
stagnation <g> ≈ 3100 µm/ns2, <Va> ≈ 18 µm/ns, <Lm>
≈ 1.5 µm, and <Rhs> ≈ 65 µm, leading to a Froude number
Fr ≈ 0.5, where Fr V gLa= 2

0  and L0 = 0.12 Lm. Using Eq. (23)
and Fig. 6 of Ref. 7, we determine the appropriate growth-rate
formula:

γ =
+

−0 9
1

1 4. . ,
k g

k L
k V

m
a (46)

where k � l/Rhs for large l’s.

Figure 85.5 compares the unstable spectrum calculated
using Eq. (46) with Rhs = 65 µm, the classical RT spectrum
without ablation [Eq. (1) with L = Lm], and the results of
numerical simulations. Except for l = 2,4 (open circles), the
numerical growth rates are calculated in the 100-ps time
interval before stagnation. The simulations of modes l = 2,4
(open circles) show a clear exponential growth only after the
shell stagnation time, and their numerical growth rate is calcu-
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lated during the 50-ps interval after stagnation. It is important
to observe that the planar theory agrees well with the numerical
results only for l ≥ 20. Low l modes seem to grow faster (almost
classically) than predicted by Eq. (46), indicating that conver-
gence effects may reduce the ablative stabilization at low l.
Furthermore, Fig. 85.5 shows that the finite ablation velocity
off the shell’s inner surface induces a cutoff in the RT unstable
spectrum, suppressing short-wavelength modes with l > 90.
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Figure 85.5
Growth rate versus mode number for the deceleration-phase RT of a NIF-like
capsule as predicted by this work [Eq. (46) (solid)], by the classical fitting
formula [Eq. (1)] with L = Lm (dashed), and by the results of numerical
simulations (open circles). The classical formula overestimates the growth
rate of the instability for l � 10.

Conclusion
In conclusion, an analytic model of the hot-spot dynamics

has been developed, and all hot-spot profiles and hydrody-
namic quantities relevant to the deceleration-phase instability
have been determined. We have shown that the ablative flow
off the shell’s inner surface plays a crucial role in reducing the
growth rate and suppressing short-wavelength modes in the
deceleration-phase RT instability. The ablation velocity and
the density-gradient scale length have been calculated in terms
of standard hot-spot parameters. Using the theory of Ref. 10,
the growth rate formula has been determined. Detailed numeri-
cal simulations have confirmed the theoretical results and have
shown RT suppression at short wavelengths. Calculations of
the unstable spectrum of a direct-drive NIF-like capsule3

during the deceleration phase have indicated that the instability
is suppressed for mode numbers l > 90.
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