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Introduction
Target irradiation uniformity is an important aspect of the

direct-drive approach to inertial confinement fusion (ICF),1,2

where the capsule is directly irradiated by a symmetrically
arranged cluster of high-intensity, ultraviolet (UV) laser beams.
Nonuniformity in laser irradiation seeds the Rayleigh–Taylor
hydrodynamic instability, which consequently degrades target
performance.3,4 Various techniques are employed on the
OMEGA5 laser to improve the on-target irradiation uniformity
to reduce laser imprint: two-dimensional smoothing by spec-
tral dispersion (2-D SSD),6–8 distributed phase plates
(DPP’s),9,10 polarization smoothing (DPR’s),5,11,12 and mul-
tiple-beam overlap. A complete understanding of the laser
focal-spot dynamics is essential to ICF performance, and it
provides valuable feedback as a laser diagnostic tool. In
Ref. 13, the smoothing rate of 2-D SSD on OMEGA was
investigated both experimentally and numerically. Excellent
agreement between the experimental results and the corre-
sponding simulations was found for all 2-D SSD cases and for
low-energy shots without applied frequency modulation (FM)
(i.e., without SSD). Laser beam smoothing of high-power
glass lasers caused by small-spatial-scale and whole-beam B-
integral effects with DPP’s and no applied FM is examined in
this article.

In the absence of externally applied FM, the beam can
acquire bandwidth because of the time-dependent B-integral
(Ref. 14, p. 385) acquired in the laser chain. The phase
difference between a wave traveling in a vacuum and a wave
propagating a distance L in a nonlinear medium in the z
direction can be expressed as

∆ϕ
π

λ
φ=

−( )
+ ( )2 10

0

n L
zB ,

where λ0 is the vacuum wavelength, n0 is the linear index of
refraction, and B is the intensity dependent phase given by
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Laser Beam Smoothing Caused
by the Small-Spatial-Scale B-Integral

where γ is the nonlinear constant of the medium and I(z) is
the intensity (compare Ref. 15). In the event that the B-integral
is nonuniform in space and time, it will cause the speckle
pattern produced by the DPP to move in the target plane,
similar to the effect of SSD. In the absence of a smoothing
mechanism such as SSD, the nonuniformity of the measured
far fields with DPP’s is expected to have an rms value of 100%,
reflecting the high contrast of the speckle pattern produced by
the presumed coherent illumination of the DPP. Experimental
far-field measurements, however, acquired on OMEGA with
the ultraviolet-equivalent-target-plane (UVETP) diagnostic of
high-energy shots without applied FM yielded smoothed far
fields with overall nonuniformity ranging from 62% to 88%.13

The nonuniformity decreases approximately linearly with in-
creasing average intensity. The amount of smoothing provided
by B-integral effects alone is not sufficient for direct-drive
ICF.7 However, shots without applied FM are base-line mea-
surements for the high-intensity SSD shots and are therefore
studied in this article.

The dominant smoothing mechanism in pulses without
externally applied FM is attributed to the small-spatial-scale
B-integral variation, which possesses sufficient temporal band-
width and beam divergence to affect OMEGA target spherical-
harmonic modes as small as l ~ 40 or wavelengths as long
as λmode ~ 80 µm (l modes are related to wavelength by
l ≡ 2πr/λmode, where r = 0.5 mm is the target radius). The small-
spatial-scale B-integral results from intensity nonuniformities
as the laser beam propagates through a nonlinear medium, such
as amplifier glass, and produces amplitude and phase modula-
tions in the beam (see Ref. 14, p. 381). This effect introduces
time-dependent phase variations across the beam, which re-
sults in some smoothing of the speckle structure when the
beam, without externally applied FM, passes through a DPP
and is focused onto the target. The whole-beam B-integral
affects smoothing to a smaller degree and is produced as the
whole beam self-focuses (see Ref. 14, p. 380). The RAINBOW
code (compare Ref. 15, p. 229) calculates the whole-beam
B-integral for the pulse shapes used on OMEGA as a function
of radius and time. It is shown later in the Laser Beam
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Smoothing section that the whole-beam B-integral produces
only a small portion of the observed smoothing because of its
small temporal bandwidth coupled to the fact that its imposed
laser divergence does not change substantially over time. As a
result, the spatiotemporal evolution of the whole-beam B-
integral is not sufficient to cause rapid movement of the
speckle pattern in the far field. The whole-beam B-integral
changes the on-target focal-spot diameter and shape by a small
amount.

The transverse spatial-intensity profile of the near field
evolves slowly in time from a center-peaked beam to an edge-
peaked beam as a result of gain saturation effects. The highest
far-field spatial frequencies produced by coherent illumination
of the DPP are caused by the interference from the outer edges
of the beam. Consequently, as the effective beam radius in-
creases in time, the energy in the highest spatial frequencies
increases. The effective radius of the fluence accurately yields
the overall high-frequency cutoff.

The code Waasikwa’* was developed to simulate the planar,
time-integrated far fields produced by the OMEGA laser,
which allows a direct comparison of the calculations to the
images acquired by the UVETP diagnostic. Waasikwa’ is a
general-purpose simulation program that has the capability to
model far fields under a variety of near-field conditions:
arbitrary spatial envelopes that possess an arbitrary temporal
envelope at any transverse point; whole-beam and small-
spatial-scale B-integral near-field phase; 2-D SSD; arbitrary
static phase aberrations; DPR’s; the inherent bandpass charac-
teristic of frequency conversion; and multiple-beam overlap.
Waasikwa’ utilizes the continuous DPP employed on OMEGA.
In addition, it can be configured to run within a shared-memory
model as a multiprocessing task on a parallel machine such as
the SGI Origin 2000.16

The following sections describe far-field simulation and analy-
sis, experimental results, simulation results, and conclusions.

Far-Field Simulation and Analysis
Waasikwa’ calculates the far-field fluence using
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where Iff (xff, yff, t) represents the instantaneous far-field
intensity. The evolution of the far-field intensity is calculated
by taking the modulus squared of a two-dimensional spatial
Fourier transform of the UV near field (compare Goodman,
Ref. 17, p. 83),
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where E(x,y,t) represents the complex-valued UV electric field
strength in the near field and (x,y) and (xff, yff) are the near- and
far-field coordinate systems, respectively; λUV = 351 nm is the
UV vacuum wavelength; and fΩ = 180 cm is the focal length of
the OMEGA focusing lens. The spatiotemporal evolution of
the complex-valued UV electric field can be expressed as

E x y t E x y t e ei x y t i x yB, , , , ,, , ,( ) ≡ ( ) ( ) ( )
0

φ φDPP (3)

where E0(x,y,t) defines the electric field envelope of the
pulsed beam; φB(x,y,t) represents the combined phase contri-
butions of the whole-beam and small-spatial-scale intensity-
dependent B-integral; and φDPP(x,y) is the static DPP phase-
plate contribution whose mapping to the far field depends on
its design. During OMEGA laser shots, the near fields of the 1-
to 3-ns square pulses evolve from a center-peaked to an edge-
peaked spatial-intensity profile. The near field of a 100-ps
pulse, however, remains center peaked for the duration of the
pulse. The spatiotemporal evolutions of both the Gaussian and
square pulses are calculated with RAINBOW and are used as
inputs to the Waasikwa’ simulations. The equivalent near-field
radius and pulse width are useful for calculating the average
intensity and are defined as (see discussion of equivalent
widths in Ref. 18, p. 148)
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*An Anishinaabe word meaning “polishes it” as in smoothing a rough surface.
Resource: J. Nichols and E. Nyholm, eds. Ojibwewi-ikidowinan and Ojibwe
Word Resource Book, Occasional Publications in Minnesota Anthropology,
No. 7 (Minnesota Archaelogical Society, St. Paul, MN, 1979).
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respectively, where the near-field fluence is defined by
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the near-field power is defined by
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It has been assumed that, for these calculations, the beam
profile is azimuthally symmetric so that the spatial energy
centroid is always located at r = 0. The equivalent widths
permit a comparison of the shorter, 100-ps pulses (which have
a center-peaked beam profile and a Gaussian pulse shape) to
the longer pulses (which are, on the average, nearly square in
space and time).

The 2-D power spectral density (2-D power spectrum or
simply the 2-D psd) is derived from either the measured or
simulated far-field fluences by taking the modulus squared of
the 2-D spatial Fourier transform, namely,
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where F(xff, yff) represents the far-field fluence as defined by
Eq. (1), (xff, yff) is the far-field coordinate system, and k kx yff ff

,( )
is the far field’s spatial-frequency coordinate system. The
azimuthal sum at each radial wave number of the 2-D power
spectrum defines the 1-D power spectral density (1-D power
spectrum or simply the 1-D psd) and is given by

psd PSDff ffff ff
k k k k dx y( ) ≡ ( )∫ , ,θ (7)

where the transformation into polar coordinates is defined as
k k kx yff ff ff

≡ +2 2  and tan .θ ≡ k ky xff ff
 The single-beam

irradiation nonuniformity σrms is defined as the square root of
the ratio of the speckle power [e.g., the high frequencies
kff ≥ 0.04 (rad/µm) at the OMEGA target plane or l modes
with l ≥ 20] to the envelope power of the far-field spot [i.e., the
low frequencies kff < 0.04 (rad/µm)]. The envelope/speckle
dividing-line wave number of 0.04 (rad/µm) represents the
lowest spatial frequency that is smoothed by 2-D SSD, as
discussed in Ref. 13. A finite entrance pupil imposes a limita-
tion on the spatial-frequency bandwidth of an optical system
(compare the intensity-impulse response or point-spread func-
tion of a diffraction-limited system with a circular exit-pupil
function in Ref. 17, p. 110). On OMEGA, the highest spatial
frequency of the laser speckle (or interference pattern) is
limited by the finite diameter of the serrated apodizer, regard-
less of the beam profile. The OMEGA entrance pupil is defined
by the diameter of the serrated aperture, which is located near
the end of the laser driver section on OMEGA. The entrance
pupil is imaged to the end of OMEGA and sets the final exit
pupil to a full-system diameter DΩ = 27.5 cm. Consequently,
the power spectrum possesses an absolute cutoff wave number
that corresponds to the f-number limited spatial frequency
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Experimental constraints restrict the analysis to the central
portion of the laser beam. Consequently, data windowing must
be employed to accurately analyze the PSD of the data.
Otherwise, when the 2-D PSD is calculated, the result contains
Fourier artifacts of the cropping function convolved with the
desired underlying power spectrum of the far field. A 2-D
generalization of the common Hamming (the Hamming func-
tion does not go to zero like the similar Hanning function)19

windowing function is employed:

SQHamming

Hamming Hamming

ff ff

ff ff
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,
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Experimental Results
A full description of the CCD-based UVETP diagnostic

can be found in Ref. 13. An example of an acquired image of
a 300-J, 3.5-ns shot with no applied FM is presented in
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Fig. 82.34, where a lineout through the center of the beam is
overplotted to show the highly modulated intensity. The laser-
beam focus is centered nominally on the photodetector, and a
584-µm central portion of the whole 950-µm far-field spot
(defined as the 95% enclosed energy contour) is captured on a
1024 × 1024-pixel grid. However, experimental variances of
the far-field centroid require that the image be cropped to
guarantee a consistent area for all shot data; a 720 × 720-pixel
portion around the far-field centroid yields a 411 × 411-µm2

area of the original image for analysis.

TC5338
584 mm

Figure 82.34
UVETP sampled far-field spot demonstrating the 46×, high-magnification
setup. The image represents a 300-J, 3.5-ns square laser pulse without applied
FM. As demonstrated with the single-pixel lineout through the center of the
beam, the spot possesses a highly modulated intensity profile. The laser beam
focus is centered nominally on the photodetector, and a 584-µm central
portion of the whole 950-µm far-field spot (defined as the 95% enclosed
energy contour) is captured on a 1024 × 1024-pixel grid.

Waasikwa’ simulations use a different scale that samples the
majority of the far-field spot to avoid aliasing effects from the
Fourier transforms in Eq. (2). The far-field spot is calculated
over a 1024 × 1024-pixel grid that spans a 993 × 993-µm2

area. The speckle structure is resolved by surrounding the
DPP data (defined as a 512 × 512-pixel grid covering 32.6
× 32.6-cm2 area) with a zero buffer of 256 pixels on each
side, forming a total near-field grid of 1024 × 1024 pixels. For
a direct comparison of power spectra, the simulated far fields
are cropped to match the area of the cropped UVETP images
so that they span 424 × 424 pixels or a 411 × 411-µm2 area.
Consequently, the power spectrum frequency spacing for ei-
ther the measurement or simulation is equivalent, i.e.,
dkff = 0.0153 (rad/µm), because the total sampled area of the

far field dictates the discrete Fourier domain spacing of the
power spectrum.

The aforementioned configurations are used for all of
the UVETP images and Waasikwa’ simulations presented in
this article. A 1-D power spectrum is calculated for each
measured UVETP image and Waasikwa’ simulation using the
square Hamming window. The analysis results for all of the
measured and simulated far fields discussed here are compiled
in Table 82.IV.

The measured nonuniformity for the high- and low-energy
shots without applied FM decreases approximately linearly
with increasing average near-field intensity. This trend is
illustrated in Fig. 82.35, where the average near-field intensity
is given by

I
U

t ravg
shot

eq eq
≡ ⋅ ⋅π 2 , (9)

where Ushot is the measured shot energy, the equivalent radius
req was defined in Eq. (4), and the equivalent pulse width
teq was defined in Eq. (5). These values are tabulated in
Table 82.IV for different pulse widths and energies. When the
average near-field intensity is increased, both the small-spa-
tial-scale and whole-beam B-integrals grow (since the small-

Figure 82.35
The nonuniformity as a function of average intensity for low- and high-energy
versions of the pulse shapes. This figure illustrates the trend in the
nonuniformity of UVETP images as a function of various pulse shapes and
energies. The squares (�) represent the high-energy shots, and the circles (�)
correspond to the low-energy counterparts. The points are labeled with the
OMEGA shot numbers. Note the suppressed zero.
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spatial-scale B-integral scales with the whole-beam B-inte-
gral), which in turn results in a lower measured value of σrms.
For example, the peak whole-beam B-integral calculated for
the 12.5-J, 100-ps Gaussian pulse increased from 4.64 rad to
9.99 rad (see Table 82.IV) when the energy of the 100-ps pulse
was increased by a factor of 3, and the measured σrms de-
creased from 83.4% to 62.3%.

Figure 82.36
The 1-D power spectrum of UVETP images for (a) low-energy, 3-ns square (shot 16217; dashed line) and 100-ps Gaussian (shot 13736; solid black line) shots
and (b) low-energy, 3-ns square (shot 16217; dashed line) and high-energy 1-ns square (shot 15723; solid black line). The low-energy shot was 5 J and represents
the expected spectrum for shots without applied FM. The high-energy shots were 508 J and 40 J, respectively, and illustrate the smoothing effects of whole-
beam and small-spatial-scale B-integrals in the regions indicated where the spectral power has been reduced relative to the low-energy shot.

Power spectra of measured UVETP images are overplotted
in Fig. 82.36 for three types of OMEGA shots without applied
FM: a low-energy, 3-ns square pulse is overplotted with a high-
energy, 100-ps Gaussian pulse in Fig. 82.36(a) and the same
low-energy pulse is overplotted with a high-energy, 1-ns square
pulse in Fig. 82.36(b). These spectra represent the three dis-
tinct types measured for no-FM pulses. The low-energy, 3-ns

Table 82.IV: Far-field analysis results from typical UVETP images and the Waasikwa’ simulations that match the near-field conditions
for a variety of pulse shapes and energies. A square-Hamming window shape was used. The UVETP image was cropped to
span 720 � 720 pixels and covers 0.411 � 0.411 mm. The Waasikwa’ simulation was cropped to match the area of
the UVETP image so that it spans 424 �  424 pixels. Note that this yields identical speckle-frequency spacing of
dkff = 0.0153 (rad/µm) for the measurement and simulation.

Shot
Number

Nominal
Pulse
Width

Output-
Pulse
Shape

UV
Beam

Energy
(J)

RAINBOW
Calculated

req
(cm)

RAINBOW
Calculated

teq
(ns)

RAINBOW
Peak Whole-

Beam
B-Integral
(radians)

UVETP
σrms
(%)

Waasikwa’
σrms
(%)

Whole-Beam
B-Integral

Waasikwa’
σrms
(%)

Whole-Beam and
Small-Spatial-Scale

B-Integrals

S12748 100 ps Gaussian 12.5 7.76 0.126 4.64 83±0.5 96.3 94.1

S13736 100 ps Gaussian 40 8.53 0.116 9.99 62±3 86.2 67.0

S15723 1 ns square 508 12.6 0.964 20.0 69±5 95.2 69.9

S13479 2 ns square 370 12.4 1.86 11.1 87±3 96.4 86.5

S16217 3 ns square 6.6 7.09 2.98 0.970 93±1 98.0 98.9

S13879 3 ns square 331 12.4 2.880 7.58 88±1 97.7 88.6
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square shot without applied FM has a measured nonuniformity
σrms = 93% near the 100% modulation expected for a DPP
without B-integral effects. The high-energy shots exhibit
nonuniformity values σrms from 62% to 88%. The 1-D power
spectra of the 100-ps Gaussian high-energy shot deviate from
the theoretical low-energy case over the spatial-frequency
range kff > 0.3(rad/µm), as seen in Fig. 82.36(a), which
corresponds to l > 150 and a full-angle near-field laser diver-
gence of about 12 µrad. This pulse has insufficient time to
smooth lower spatial frequencies. Conversely, the 1-D power
spectra of the high-energy, 1-ns square shot deviates over a
larger spatial-frequency range kff > 0.08(rad/µm) (l > 40), as
seen in Fig. 82.36(b), even though this pulse has a lower
average intensity and higher nonuniformity. For both cases, the
deviation from the low-energy spectrum becomes significant,
i.e., a ratio greater than about 2  for kff > 0.7 (rad/µm)
(l > 350), which corresponds to a full-angle, near-field laser
divergence of about 4 µrad. The other two high-energy square
pulses, given in Table 82.IV, exhibit power spectra character-
istics similar to the 1-ns case except that the power spectra
show less deviation from the low-energy spectrum.

A comparison of the power spectra for the experimental
measurements and the simulations demonstrates the smooth-
ing effect of the small-spatial-scale and whole-beam B-inte-
grals. The details of the B-integral modeling are given in the
Laser Beam Smoothing section. The power spectra of the
UVETP images are shown in Fig. 82.37 through Fig. 82.40 (as

solid gray lines) for the 100-ps, 1-ns, 2-ns, and 3-ns pulses with
no FM, respectively. The figures include the resultant 1-D
power spectra from corresponding Waasikwa simulations that
include only whole-beam B-integral and both small-spatial-
scale and whole-beam B-integral effects. Each power spec-
trum is normalized to the spectral energy of the 1-D power
spectrum. The measured σrms is the lowest for the 100-ps pulse
at 62.3% and increases with increasing pulse length up to
88.4% for the 3-ns pulse. The values of the nonuniformity σrms
for all the UVETP images are summarized in Table 82.IV. The
UVETP diagnostic was configured with a Gaussian-like DPP,
which is fabricated to produce a far-field spot with an N = 2.5
super-Gaussian spatial-intensity envelope, for all of the shots
except the 3-ns pulse. A higher-order DPP, which is fabricated
to produce a far-field spot with an N = 6.5 super-Gaussian
spatial-intensity envelope, was installed for the 3-ns pulse. The
spatial-intensity envelope of the far field determines the low-
wave-number power spectrum but does not significantly affect
the large-wave-number power spectrum. The data windowing
occludes the low-wave-number power spectra differences be-
tween the two DPP designs.

Simulations of the power spectra demonstrate that tempo-
rally varying local phase distortions in the beam caused by
small-spatial-scale and whole-beam B-integral effects in the
laser decrease the nonuniformity to levels that match the
experimental results in pulses with no applied FM. The theo-
retical predictions of the models that include both of the
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Figure 82.38
The 1-D power spectrum of a UVETP image of a 1-ns square pulse (shot
15723; solid gray line) and the corresponding Waasikwa’ simulation includ-
ing only whole-beam B-integral effects (dashed line) and both small-spatial-
scale and whole-beam B-integral effects (solid black line).
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Figure 82.37
The 1-D power spectrum of a UVETP image of a 100-ps Gaussian pulse (shot
13736; solid gray line) and the corresponding Waasikwa’ simulation includ-
ing only whole-beam B-integral effects (dashed line) and both small-spatial-
scale and whole-beam B-integral effects (solid black line).
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Figure 82.39
The 1-D power spectrum of a UVETP image of a 2-ns square pulse (shot
13479; solid gray line) and the corresponding Waasikwa’ simulation includ-
ing only whole-beam B-integral effects (dashed line) and both small-spatial-
scale and whole-beam B-integral effects (solid black line).
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Figure 82.40
The 1-D power spectrum of a UVETP image of a 3-ns square pulse (shot
13879; solid gray line) and the corresponding Waasikwa’ simulation includ-
ing only whole-beam B-integral effects (dashed line) and both small-spatial-
scale and whole-beam B-integral effects (solid black line).

B-integral effects are in excellent agreement with the measured
power spectra for the 1-ns, 2-ns, and 3-ns square pulses over
the range of kff > 0.1 rad/µm. There is a slight discrepancy for
the combined B-integral model due to excess smoothing over
the range of 0.1 < kff < 0.3 rad/µm. The 100-ps Gaussian
simulations are limited by the near-field measurements as
described in the next section. The impact of the small-spatial-
scale B-integral effects (solid black line) on the power spec-
trum is evident in Figs. 82.37–82.40, where the simulations
(dashed line) that model the whole-beam B-integral effects but
neglect the small-spatial-scale B-integral effects are shown.
The effects of the whole-beam B-integral reduce the σrms to a
level of 86.2% and 95.2% for the 100-ps and 1-ns high-energy
pulses, respectively, which does not match the experimental
results with σrms = 62% for the 100-ps pulse and σrms = 69.3%
for the 1-ns pulse. The combined effects of the whole-beam and
small-spatial-scale B-integrals, however, reduce the σrms to a
level of 67.0% and 69.9% for the 100-ps and 1-ns high-energy
pulses, respectively, which is comparable to the experimental
values. The values of the nonuniformity σrms for all the
Waasikwa’ simulations are summarized in Table 82.IV.

Laser Beam Smoothing
Smoothing in the far field occurs when the state of the

transverse phase front of the near field, given by φ(x,y,t),
changes as a function of time such that the spatial coherence is
altered. For a particular instant in time, a state φ(x,y,t) will
produce a unique speckle pattern in accordance with the

statistics of the DPP. If the state of φ(x,y,t) changes in time over
an interval τ ≡ t2−t1 (where τ is of the order of the coherence
time for the pulse) such that a change in state ∆φ(x,y,τ)
≡ φ(x,y,t2)−φ(x,y,t1) is nonconstant over the near field, the
instantaneous far-field speckle pattern will change, resulting in
time-integrated smoothing. Alternately, if the quantity ∆φ(x,y,τ)
is constant over the near field, during the time interval τ, then
no change in the far-field speckle pattern occurs regardless of
how rapidly the state φ(x,y,t) varies in space or time. For
example, a nondispersed phase-modulated pulse can be repre-
sented by φ(x,y,t) = φ1(x,y) + φ2(t).

Time-integrated smoothing in the far field can be under-
stood as a movement of the speckle structure or as a distinct
change of the speckle structure as a function of time. If the
change in state ∆φ (x,y,τ) has a linear form, i.e.,

∆φ τ φ φx y x x y y, , ,( ) ≡ ∂ ∂( ) + ∂ ∂( )

then the speckle pattern will appear to laterally shift in the far
field by the amounts given by ∆ Ωx f xff = ∂ ∂( )φ  and
∆ Ωy f yff = ∂ ∂( )φ . In the more general case, the phase-state
φ(x,y,t) can be Fourier decomposed into a set of modes as

φ
π

φx y t k k t e dk dkx y
i k x k y

x y
x y, , ˜ , , ,( ) ≡ ( )∫∫ + +( )

∀

1

4 2
spatial

frequencies

(10)
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where ˜ , ,φ k k tx y( ) represents the complex spectral amplitudes
of the Fourier kernel e i k x k yx y+ +( ). At each instant in time
φ x y t, ,( ) ∈ � , which implies that the integral in Eq. (10) may be
reduced to two times the real part of the integral over the upper
half-plane that excludes the negative axis owing to the sym-
metry properties of the Fourier transform of real functions
[i.e., the transform is Hermitian ˜ , , , ,*φ φk k t k k tx y x y( ) = − −( )
(Ref. 18, p. 14)].

The smoothing effectiveness of an evolving phase state
φ(x,y,t) can be understood by examining the contribution of the
term eiφ(x,y,t) to the far-field distribution. The instantaneous
far-field speckle pattern is calculated by Eq. (2). The convolu-
tion theorem dictates that the result can be written as

I x y t E x y t E x y tff ff ff DPP ff ff ff ff, , , , * , , ,( ) = ( ) ( )φ
2

(11)

where the quantity EDPP (xff, yff, t) represents the complex
field of the speckle pattern caused by the combined effect of
the current beam cross section and the DPP; the quantity
Eφ(xff, yff, t) represents the instantaneous complex far-field
pattern caused by the phase state φ(x,y,t); and the symbol *
denotes the convolution operation. The extent of the far-field
pattern Eφ(xff, yff, t) determines the wavelengths that can be
smoothed: the greater the area covered, the longer the wave-
lengths that the phase state φ(x,y,t) can smooth. The far-field
pattern Eφ(xff, yff, t) must change over time to affect smoothing.
Further, the pulse must be long enough to cover many coher-
ence times: the longer the wavelength, the more smoothing
time required.

φ

φ φ

x y t

k k t k k t k x k yx y x y x y

, ,

˜ , , sin ˜ , , ,

( )

= ( ) ( ){ } + +( )2 � (12)

where the term ˜ , ,φ k k tx y( )  represents the magnitude of the
Fourier component and the term � ˜ , ,φ k k tx y( ){ }  represents the
phase [where the operator � eiθ θ{ } = ]. The term ˜ , ,φ k k tx y( )
determines the amount of laser divergence, given approxi-
mately by

∆θ φ≅ ( ) +[ ] +2 1 2 2˜ , , .k k t k kx y x y

If the quantity ˜ , , ,φ δk k tx y m( ) =  where δm is constant and
� ˜ , ,φ ωk k t tx y m( ){ } = , then Eq. (12) is functionally identical
to 1-D SSD.20 In this scenario, the spectral components of
Eφ(xff, yff,t) in the far field have fixed amplitudes and a fixed

spacing (given by the well-known Bessel function expansion;
see Ref. 20) but a varying relative phase. If the magnitude of
the phase varies in time as ˜ , ,φ δk k t tx y m( ) = ( )  and if the
phase term � ˜ , ,φ k k tx y( ){ }  is constant, the spectral compo-
nents of Eφ(xff, yff, t) in the far field have a fixed spacing
analogous to the SSD-like case but with a varying amplitude
and a fixed relative phase. As the magnitude δm(t) increases,
the number of the spectral components increases and spreads
out into the far field (this situation is directly analogous to what
happens when the whole-beam B-integral modifies the phase
magnitude where the Fourier component’s wavelength is twice
the beam diameter). A general case is constructed when both
the magnitude and phase terms in Eq. (12) are allowed to vary
with time. A stochastic model may also be employed where the
magnitude and relative phase terms change in time of the order
of the coherence time and obey a probability density function.

If more than one spectral mode is considered, a variety of
complex smoothing mechanisms can be constructed. How-
ever, an arbitrary phase state that alters the spatial coherence
over time and, in addition, is consistent with the observations
cannot be selected. When considering a small number of
Fourier components, the member with the greatest laser diver-
gence can be assumed to dominate the remaining members
since its laser divergence will be the strongest (see Ref. 21,
p. 241 regarding transmission bandwidth). Otherwise, the total
divergence of each member must be considered in terms of
their combined effect as they convolve together in the far field
and produce a greater spread and smooth longer wavelengths.
To this end, the dominant mode will contribute a full-angle
divergence of ∆θ δ≅ ( ) +[ ] +2 1 2 2

m x yt k k  and a temporal band-
width ∆ω δ ω≅ ( ) +[ ]m mt 1 , and the other modes will contrib-
ute significantly only if their respective spatial or temporal
bandwidths are comparable to the dominant mode. The maxi-
mum far-field wavelength that can be smoothed is given by
Smax = fΩ∆θ. The situation is analogous to the small-spatial-
scale B-integral when the Fourier components have a fixed
phase relationship (i.e., they do not move across the near field)
and the modulation depth (of each spectral component) changes
as the pulse evolves.

1. Whole-Beam B-Integral Modeling
The electric field and phase calculated by RAINBOW for a

pulsed beam are in cylindrical coordinates, viz. (r,t). Con-
versely, Waasikwa’ models both transverse dimensions and
time in rectangular cartesian coordinates, viz. (x,y,t). Accord-
ingly, a two-dimensional spline fit is performed at each time
step to resample RAINBOW data into cartesian coordinates.
The complex-valued electric field with no applied FM or DPP
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that describes the UV near field is expressed in terms of the
converted RAINBOW data as

E x y t E x y t e
i x y tB, , , , .

, ,( ) ≡ ( ) ( )
0rb

rb
φ

(13)

The phase term φB x y t
rb

, ,( )  calculated by RAINBOW
represents the whole-beam B-integral that is an intensity-
dependent phase accumulated during propagation within a
nonlinear medium.

The phase state calculated by RAINBOW is roughly sepa-
rable, i.e., φ δ φB B Bx y t t x y

rb rb rb
, , ,( ) ≅ ( ) ( ) . The quantity

φB x y
rb

,( )  represents the initial beam shape that is injected
into the laser chain, and the term δB t

rb
( )  represents the initial

pulse shape. This occurs because of self-phase modulation in
the laser chain that is more severe in the first amplifiers where
the local intensity is higher and prior to significant gain
saturation that causes the intensity beam profile to change over
time. In other words, even though the intensity envelope is
altered after the whole laser chain, the phase modulation
retains a shape very similar to that of the injected beam. (The
form of the phase state is analogous to that discussed in the
previous section, where the spatial portion of a mode is fixed
and the modulation depth changes over time.) Therefore, the
laser divergence causes the far field to expand as a function of
time. This effect for a 100-ps Gaussian pulse is illustrated in

Fig. 82.41, where the laser divergence is plotted against time.
Based on the calculated laser divergence one would expect that
the whole-beam B-integral would smooth down to the far-field
spatial frequency,

k
fff

rad

m
= ≈2

0 35
π
θ µΩ∆

. ,

from the calculated full-angle divergence of ∆θ ≈ 10 µrad (see
Fig. 82.41). As shown in the Experimental Results section the
nonuniformity calculated with this model, however, falls short
of the measured smoothing. Additionally, the power spectrum
(dashed line in Fig. 82.37) is almost identical to the low-energy
pulse (dashed line in Fig. 82.36). The primary reason is that
although there is sufficient laser divergence, the temporal
bandwidth for this method is insufficient to produce a short
coherence time because the peak B-integral is limited. This
model also fails to predict the measured nonuniformity and
power spectra for the square pulses for the same reasons.

2. Modeling of Small-Spatial-Scale and Whole-Beam
B-Integrals
Near-field images of high-energy shots were obtained in the

UV section of the OMEGA system (measured after the final
amplifiers and after the FCC’s). Two pulse lengths—a 100-ps
Gaussian [Fig. 82.42(a)] and a 1-ns square [Fig. 82.42(b)]—
were captured to compare the fluence of the early times to that
at later times. The 100-ps Gaussian near field was representa-
tive of a center-peaked beam; the 1-ns square pulse was repre-
sentative of an edge-peaked beam. These images revealed
evidence of small-spatial-scale intensity ripple across the
beam, which was more severe for the shorter pulse than the
longer pulse because of gain-saturation effects. This evidence
has led to speculation that the small-spatial-scale B-integral
caused the observed smoothing; the depth of the fluence ripple
corresponds to the laser divergence required to affect the
smoothing in the range kff > 0.1 (rad/µm), and the growth of the
ripple provides the required temporal bandwidth.

The small-spatial-scale and whole-beam B-integral phases
both result from self-phase modulation, which is proportional
to the local accumulated intensity of the beam as it propagates
through a nonlinear medium. The combined phase effects of
the small-spatial-scale and whole-beam B-integrals can be
inferred from the fluence measured by the near-field images.
The time evolution of the small-spatial-scale B-integral can be
approximated to follow the spatiotemporal evolution of the
whole-beam B-integral that is calculated by RAINBOW. This is

Figure 82.41
The calculated laser divergence due to the whole-beam B-integral as a
function of time for a 40-J, 100-ps Gaussian pulse.
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Figure 82.42
Two near-field fluence measurements, taken after the FCC’s, represent the
early- and late-time evolution of a long pulse. (a) The first image (shot 14233)
is a 100-ps Gaussian pulse representative of the early-time evolution. (b) The
second image (shot 14234) is a 1-ns square pulse representative of the late-
time evolution.

only valid, however, over a small energy range neighboring the
measured near field because the ripple across the beam be-
comes less pronounced as saturation becomes important. For
long, high-energy (fluence) pulses, the beam experiences sig-
nificant gain saturation in the system amplifiers. The beam
profile is smoothed at later times in the pulse because the
amount of gain saturation at any spatial location in the beam is
proportional to the beam’s fluence at that location; initially
“hotter” regions of the beam experience reduced gain. This
effect is modeled by temporally blending different measured
near fields.

A model of combined B-integral effects is constructed by
perturbing both the intensity and phase calculated by RAIN-
BOW simulations. The electric field of the near field is ex-
pressed as [compare Eq. (3)]

E x y t E x y t ei x y tB
sim sim

sim, , , , ,, ,( ) ≡ ( ) ( )
0

φ (14)

where the perturbed magnitude of the electric field is defined
by

E x y t E x y t x y0 0sim rb
, , , , , ,( ) ≡ ( ) ( )Γ (15)

and the perturbed phase contribution due to both small-spatial-
scale and whole-beam B-integral effects is given by

φ φB Bx y t x y t x y
sim rb

, , , , , .( ) ≡ ( ) ( )Γ (16)

The unperturbed magnitude and phase of the electric field
calculated by RAINBOW simulations are given in Eqs. (15) and
(16) by E x y t0rb

, ,( )  and φB x y t
rb

, ,( ) , respectively. The pertur-
bation function Γ(x,y) represents the scaled ratio of a UV near-
field fluence measurement to the fluence calculated from a
RAINBOW simulation, namely

Γ x y
F x y

F x y
,

,

,
,( ) ≡ ( )

( )
α UVnf

rb
(17)

where the subscript UVnf indicates the UV near-field mea-
surement, the subscript rb indicates the RAINBOW simulation,
and α is the proportionality constant and is defined by

α ≡ W

W
rb

UVnf
, (18)

where Wrb is the RAINBOW simulation energy and WUVnf is
the UV near-field energy.

The two UV near-field measurements are blended tempo-
rally to construct a model for longer, higher-energy pulses. The
UV near-field measurements are used to divide the longer
pulse into segments based on the energy within each measured
UV near field. The techniques described previously are em-
ployed to evaluate the perturbation function within each tem-
poral segment. The blending function is defined as a dimen-
sionless and smooth step function:
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Table 82.V: Summary of the model parameters for 1-ns, 2-ns, and 3-ns square pulses.
The parameters τ1 and τ 2 define when the RAINBOW simulation has
energy equivalent to the first and second UV near field, respectively. The
energy of the first UV near field is 100 J; the energy of the second UV
near field is 290 J.

Shot
Number

Nominal
Pulse Width

(ns)

Measured
Energy

(J)

τ1
for 100 J

(ns)

τ2
for 290 J

(ns)

r
(1/ns)

S15723 1 508 0.225 0.555 1.92

S13479 2 370 0.645 1.57 1.12

S13879 3 331 1.18 2.99 0.775

Figure 82.43
The calculated laser divergence due to the whole-beam and small-
spatial-scale B-integrals as a function of time for a 1-ns square pulse at full
system energy.

b r t

r t r t

τ τ

τ τ

on off

on off

, , ,

tanh tanh ,

( )

≡ −( )[ ] − −( )[ ]{ }1

2
(19)

where τon and τoff are the turn-on and turn-off times and r is
the rate at which the blending function mixes the UV near
fields. The dividing time of the segments is defined when the
RAINBOW simulation has equivalent energy to a UV near-
field measurement:

W I x y t dx dy dt
n

n

UVnf rb
near
field

≡ ∫ ( )∫∫
0

τ
, , , (20)

where the subscript n refers to a particular near field, e.g.,
n = 1 for the first UV near field. The times τn define the turn-
on and turn-off times for the blending function; one blending
function turns off as the next one turns on, e.g., the first
blending function is b(−∞,τ1,r,t) and the second is b(τ1,τ2,r,t).
The final blending function mixes into unperturbed RAINBOW
data with b(τ2,∞,r,t). Energy conservation requires that

b r t t
n n

n
τ τon off, , , ; .( ) = ∀

=
∑ 1

1

3
(21)

The time difference between τ1 and τ2 will change according
to the modeled pulse. As the differential ∆τ = τ2−τ1 decreases,
the mixing rate r increases, which effectively describes how
the small-spatial-scale perturbations change more rapidly. The
decreased ∆τ occurs physically because the saturation fluence
is reached earlier for the higher-intensity pulses. The mixing

rate is adjusted to eliminate any step that may be introduced in
the nonuniformity as a function of time. The switching times
and mixing rates for the different modeled pulses are given in
Table 82.V.

The calculated laser divergence for this model as a function
of time is illustrated in Fig. 82.43 for a 1-ns square pulse at full-
system energy. This modeling scheme works well for the
longer square pulses but does not adequately describe the
smoothing observed for the shorter, 100-ps pulses. This is
attributed to the fact that the early time evolution of the small-
scale B-integral is not captured on either measured near field,
and consequently, only a single UV near field is used.
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Conclusion
The observed smoothing on high-energy OMEGA shots

without applied FM has been successfully modeled using a
combination of small-spatial-scale and whole-beam B-integral
effects. The smoothing affects mainly the spatial wave num-
bers kff > 0.1(rad/µm) and can reduce the nonuniformity to
levels of 62%. The nonuniformity decreases approximately
linearly with increasing average intensity of the pulsed beam.
The amount of smoothing due to small-spatial-scale B-integral
effects is insufficient for direct-drive ICF. Reference 13 shows
that smoothing by spectral dispersion overwhelms this effect
in the mid-range spatial frequencies where these modes are
considered the most dangerous spatial frequencies for ICF
implosions.7 Hence, it is not expected that the B-integral
effects mitigate hydrodynamic instabilities due to their
minor influence.
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