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In inertial confinement fusion (ICF), a spherical shell filled
with a DT-gas mixture is compressed to high densities and
temperatures to achieve ignition condition.1 Degradation from
spherical symmetry during the implosion, however, limits the
achievable compression ratios and could quench the ignition.
The main source of such asymmetry is hydrodynamic insta-
bilities (such as the Rayleigh–Taylor and Bell–Plesset insta-
bilities) seeded by both irradiation nonuniformities and
impurities in the target materials. In this article we describe a
process that generates mass perturbations on an initially uni-
form target driven by a modulated laser illumination. Such a
process is referred to as a “laser imprint.” The control of laser
imprint is of crucial importance for the successful implosion
of direct-drive ICF targets. To evaluate the imprint growth,
the following two physical problems must be considered:
(1) generation of nonuniformities in ablation pressure due to
spatial modulations in a laser intensity, and (2) mass perturba-
tion growth on a target driven by nonuniform ablation pres-
sure. A detailed analysis of the first problem can be found in
Refs. 2. The second problem, however, has not been ad-
equately treated in the past. In Ref. 3, for example, perturbation
growth was derived by using the Chapman–Jouguet deflagra-
tion model. As discussed in Refs. 4, such a model neglects
thermal smoothing of perturbations in the conduction zone (a
region between the critical surface and ablation front), and in
addition, it does not reproduce the main restoring force, which
is due to a difference in the dynamic pressure at the peaks and
valleys of the front distortion.5,6 An improved model has been
proposed in Ref. 4, where thermal smoothing of the pressure
perturbations has been included. At the ablation front, how-
ever,  the authors used the “Landau–Darrieus” boundary con-
dition that, similar to the result of Ref. 3, neglects the main
stabilizing force due to the dynamic overpressure.

The main goal of this article is to give a theoretical descrip-
tion of the hydrodynamic coupling between the pressure per-
turbation and the ablation-front modulation. The developed
theory is relevant to the stability of high-isentrope (α ≥ 2,
where α is the ratio of the pressure at a given density to the
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Fermi pressure) ICF targets directly driven by a laser pulse that
consists of a low-intensity (a few 1013 W/cm2) foot followed
by the main drive pulse. During the foot pulse, the ablation
pressure created by the mass ablation generates a shock wave
that propagates through the shell. Since the laser intensity is
constant during the shock transit time, the pressure behind the
shock is uniform and the ablation front travels at a constant
velocity. Later, as intensity increases during the main pulse (in
direct-drive cryogenic target designs the beginning of the main
pulse is timed to the first shock breakout of the shell7), the shell
starts to accelerate and front perturbations η begin to grow
because of Rayleigh–Taylor (RT) instability η η γ~ ,0e tRT  where
γRT is the RT instability growth rate. If the perturbation ampli-
tude becomes too large during the implosion, the shell breaks
up, and the ignition condition cannot be reached. To quantify
the shell integrity, we introduce an “integrity factor”
� = A Rmix ∆ ,  which is defined as a ratio of the mix amplitude
(bubble amplitude) Amix to the shell thickness ∆R. The bubble
amplitude is taken to be1 Amix = 2σ ,  where

σ η π2 2
4= ∑ ( ) ( )l m l m t, ,

is the rms sum of the modes, ηl m l md Y R t, ,
* , ,= ( ) ( )∫ Ω Ω Ω  R(Ω,t)

is the radius at solid angle Ω and time t, and Yl m,
*   is the complex

conjugate of the l,m spherical harmonic. The shell remains
intact during the implosion if the integrity factor is less than
unity (� < 1 for all time). Simulations performed for direct-
drive cryogenic OMEGA and NIF target designs show that to
satisfy the condition � < 1 during the implosion, the integrity
factor �0 at the shock breakout time tbr must be less than

  
�0 0 01max . .=  In this article we present a model to estimate

  
�0

imp  due to the laser imprint. Such a model sheds some light
on physical mechanisms driving the laser-imprint growth. To
proceed with our analysis, first we note that during the prepulse,
the shell’s outer radius R is much larger than the target thick-
ness ∆R, and convergence effects can be neglected. All pertur-
bations are then decomposed in the Fourier space
η η= ∑k k

ikxe , where
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k � l/R is the wave number, and l is mode number. Since the
perturbation amplitude in the linear regime is proportional to
the laser nonuniformity, we introduce a normalized amplitude
η η δδk I k kI I, ,≡ ( )0  where δIk is the Fourier component of the
intensity modulation and I0 is the average intensity. Then, the
integrity factor takes the following form:

  
� �2 2

0
2

≡ ∑ = ∑ ( )k k k k I kI I Rη δδ, .∆

Nonuniformity in the laser illumination δI Ik 0  can be ob-
tained from the spectrum of the laser speckle on target pro-
duced by the distributed phase plates (DPP’s). Thus, to estimate
the integrity factor, we must calculate an imprint amplitude
η η δimp ≡ k I R, ∆  at the shock breakout time (beginning of the
main pulse) t t R Us= =br ∆ 0 ,  where ∆R0 is the uncompressed
shell thickness and Us is the shock speed. For strong shocks
[when the ratio of the ablation pressure pa and the initial
pressure of the undriven shell p0 is large Π ≡ >>( )p pa 0 1 ]
and the ratio of specific heat γ = 5/3, the shock breakout time
is t R csbr � 2∆ ,  where cs is sound speed of compressed mate-
rial and ∆ ∆R R� 0 4.

The laser imprint growth is determined by several physical
effects. First, as the laser energy is absorbed by the outmost
layer of the shell at the beginning of implosion, the shell
material heats up, launching a heat wave toward the pellet
center. Material behind the heat front expands outward, creat-
ing an ablation pressure pa that induces a shock wave propagat-
ing through the shell. Nonuniformities in the intensity across
the laser beam cause different parts of the beam to ablate shell
material at different rates, generating an ablation-pressure
modulation p̃a  along the ablation front. Since the shock speed
Us scales as a square root of the shock strength Π ( Us ~ Π  for
Π >> 1), stronger shocks launched at the peaks of ablation
pressure propagate faster than the shocks launched at the
pressure valleys. A difference in the shock speed distorts the
shock front and creates a perturbed velocity field inside the
compressed region. A velocity perturbation at the ablation
front, in turn, leads to a linear-in-time front distortion growth

  η ~ ˜ ,vxt  where    
˜ ~ ˜ ,vx a s ap U p2( )  and the x axis points in the

direction of laser propagation. Note that such a growth is
wavelength independent. Then, in order to conserve the tan-
gential component of the fluid velocity,  a rippled shock front
generates a lateral mass flow from the convex part of the shock
front (which protrudes the most into the cold region) into the

concave part (Fig. 80.1). A change in density, according to the
adiabatic condition ∂ = ∂t s tp c˜ ˜ ,2 ρ  leads to a pressure deficiency
in the convex part and a pressure excess in the concave part.
Since the pressure perturbation at the ablation front is fixed by
the laser-beam nonuniformities, the lateral flow creates a
negative pressure gradient toward the convex part of the shock
front and a positive one toward the concave part. The pressure
gradient accelerates fluid elements ρ η ρd a pt x a

2 = ∂˜ ~ ˜ , lead-
ing to an additional perturbation growth η ρ~ ˜ ,∂ ( )x ap t2 2

where ρ is the compressed density and η is the ablation front
amplitude. After the shock front has moved a distance of the
order of perturbation wavelength from the ablation front, the
latter reaches a steady state (assuming that the ablation pres-
sure modulation is constant in time), and the pressure pertur-
bation in the vicinity of the ablation front obeys Laplace’s
equation ∂ − =x p k p2 2 0˜ ˜ . Keeping only a decaying solution of
that equation, ˜ ~ ˜ ,p p ea

kx−  leads to a finite pressure gradient,
a perturbed acceleration of the ablation front,

  ̃ ~ ˜ ˜ ,a p kpx a a∂ ρ ρ�  and a quadratic-in-time asymptotic per-
turbation growth η ρkc t p kts a>>( ) ( )1 22~ ˜ .
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Figure 80.1
Lateral mass flow generated by the rippled shock creates a pressure excess
behind the concave part of the shock front and a pressure deficiency behind
the convex part.

A rigorous derivation of the perturbation evolution in the
“classical” case (constant-in-time ablation-pressure modula-
tion and no mass ablation) is performed by solving the mass,
momentum, and energy conservation equations. Such a deriva-
tion (to be discussed in detail in a forthcoming paper8) yields
a result similar to the one obtained above by using a simple
physical argument. For strong shocks Π >> 1 and γ = 5/3, the
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solution is

  
η t

p

p
c t kc ta

a
s s( ) +( )�

˜
. . .0 7 0 3 2 2 (1)

Note that Eq. (1) can be reproduced by solving a simple
second-order differential equation

d a k
p

p
ct

a

a
s

2 2η
γ

= =˜
˜

(2)

with the initial conditions η(0) = 0 and ′( ) = ( )η 0 0 7. ˜ .p p ca a s
To calculate the imprint amplitude ηimp, we assume2  p Ia ~ 2 3

and δI I p pk a a0 3 2= ( ) ˜ , hence

  
ηimp

cl � �0 8 0 9 0 8 0 9. . . . ,k R
l

A
∆ + + (3)

where A = R/∆R is the shell’s in-flight aspect ratio (IFAR).
Equation (3) shows that the imprint amplitude of long-wave-
length modes (k∆R << 1 or l < 15 for directly driven NIF
targets) is wavelength independent; at short wavelengths,
however, the imprint amplitude is proportional to the mode
number l and inversely proportional to the IFAR. In addition,
the imprint amplitude in the classical case does not depend on
the laser intensity. Next, we calculate the integrity factor for a
direct-drive α = 3 NIF target design7 using ηimp in the form of
Eq. (3). The amplitudes δIk/I0 can be estimated by using the
results of Ref. 9. The calculation yields     �0 0 2imp � . ,  which is
a factor of 20 larger than the stability threshold   �0

max. The RT
instability seeded by such a perturbation would disrupt the
shell during the acceleration phase of implosion and quench
the ignition. In direct-drive ICF, however, several physical pro-
cesses significantly reduce the imprint growth. Next, we consider
the main stabilizing mechanisms inherent to laser-driven targets:
thermal conduction smoothing and mass ablation.

Thermal Conduction Smoothing
As the heat front (ablation front) propagates into the cold

portion of the target, material heats up and expands outward
creating a hot plasma corona. The laser light is absorbed in a
region (absorption region) where the density of blown-off
material is much lower than the compressed shell density.
Thus, a finite zone (conduction zone) of hot plasma exists
between where the laser energy is deposited and the ablation
front. Because of the high temperatures, any pressure perturba-
tions inside such a region are smoothed out by the thermal
conduction. The simplest theory10 predicts that pressure per-
turbations decay exponentially away from the critical surface

(“cloudy-day effect”) ˜ ~ ;p e kx−  thus, nonuniformities in the
ablation pressure are reduced by a factor e kDc− ,  where Dc is a
distance between the absorption region and the ablation front.
More-sophisticated models of thermal smoothing2 yield simi-
lar behavior of the reduction coefficient. To simplify the
analysis, the distance Dc is taken to be   D V tc c� ; this leads to
an exponential decay in the ablation pressure perturbation

  ̃ ˜ .p p ea a
kV tc� 0( ) −  After t kVc= ( )−1

,  laser nonuniformities with
the wave number k decouple from the ablation front, nullifying

the k-Fourier component of the perturbed acceleration ã . The
ripple of the ablation front, however, continues to grow due to
a finite velocity perturbation

η t kV tc x> ( )[ ]−1
~ ˜ .v

Scaling laws of the perturbation growth can be derived by
solving Eq. (2) and substituting ˜ ˜p p ea a

kV tc= ( ) −0  into its
right-hand side:

d k
p

p
c et a

a

a
s

kV tc2 20η
γ

= ( ) −˜
. (4)

The imprint amplitude in this case takes the following form:
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−( ) + +−∆ (5)

where ∆c = 2(l/A)Vc/cs. Equation (5) shows that for modes with
∆c > 1 (l > 10 for direct-drive NIF targets) thermal smoothing
reduces the imprint amplitude by a factor η ηimp

th
imp
cl ~ .A l

Mass Ablation
An additional reduction in the imprint growth is due to the

mass ablation. The main stabilizing mechanism produced by
ablation is the dynamic overpressure or “rocket effect”5,6 that
can be described as follows: Laser-beam nonuniformities
create ablation-pressure modulations along the target surface.
Such modulations (see discussion earlier in the text) distort the
ablation front: front peaks protrude into the hot plasma corona,
and the valleys move toward the cold target material. Analysis
of Ref. 5 shows that because of high thermal conductivity in
the blowoff region, temperature is uniform along the heat
(ablation) front. Thus the ablation front’s distortion growth
slightly increases the temperature gradient at the front peaks
and decreases it at the front valleys. An increase in the tempera-
ture gradient leads to an additional heat flow that speeds up the
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heat front and increases the velocity of the blown-off material
Vbl. Higher blowoff (“exhaust”) velocity creates an excess in
the dynamic pressure (“rocket effect” increases). At the pertur-
bation valleys, the picture is reversed:  a reduction in the
temperature gradient decreases the ablation and blowoff ve-
locities, thus the dynamic pressure and the rocket effect are
also reduced. We can conclude that the modulation in the
dynamic pressure created by the thermal conduction reduces
the perturbation growth and ultimately stabilizes the growth
completely. Calculations5 show that the amplitude of the
dynamic pressure is proportional to the front distortion
˜ ˙ .p mV kd = bl η  Hence, perturbations reach a saturation value
ηsat when the dynamic-pressure modulation balances the abla-
tion-pressure modulation ˜ ~ ˙ ,p mV ka bl satη  where ṁ V= ρ  is
the mass ablation rate. Next, to perform a quantitative stability
analysis, we solve the system of conservation equations as-
suming a sharp interface at the ablation front and a constant-in-
time ablation-pressure modulation ˜ .pa

8 Skipping lengthy
calculations, we report a final formula for the asymptotic
behavior (kcst >> 1) of the front-surface perturbations in the
case of strong shocks Π >> 1 and γ = 5/3:

    

η
γ ω

ω

ω
ω η

t

p p

kc
D t

c c

V
D t t

a a

s

s s

( )
( ) −( )

+ −






+ ( )

˜
cos

. sin ,

�
2

2 1

1 2
2

bl
v (6)

where D e kV ta= −2 , Va and Vbl are the ablation and blowoff
velocities, respectively, and ω = k V Va bl .  The last term ηv is
due to the vorticity convection from the shock toward the
ablation front:

  
η τ τ ωτ

v = ( ) −





−∞
∫

2
2 1 2

c

kV
e e d D ts kV t

kV t
a

abl
Ω . cos ,

where

  Ω = ∇ ×( ) ( ) ( ) − ( )i kc p p J Jz s a av ˜ γ τ τ� 3 20 4

is the normalized vorticity and Jn(τ) is the Bessel function.
Equation (6) shows that the front perturbation grows according
to Eq. (1) until the distortion amplitude becomes big enough
and the dynamic overpressure balances the ablation-pressure
perturbation. After that time, the ablation front oscillates
around an average amplitude <η> = ηsat. In addition, the
difference in the ablation velocity at the distortion peaks and
valleys and also the vorticity convection from the ablation

front damp the perturbation amplitude [factor e kV ta−2  in
Eq. (6)].

The next step is to combine effects of the mass ablation and
thermal smoothing. An analytical solution of conservation
equations in this case has a very lengthy form.8 We omit a
rigorous derivation of such a solution in this article, however,
noting that the essential physics of the imprint growth reduc-
tion can be described by an approximate solution derived from
Eq. (2) with the following modifications: To take into account
the mass ablation effects, first, we add to the left-hand side of
Eq. (2) the stabilizing term due to the dynamic overpressure
(rocket effect) ω2η, and then, the damping term 4kVadtη,
which is due to the difference in the mass ablation rate at the
front peaks and valleys and also to the vorticity convection
downstream from the ablation front. Thermal smoothing of the
pressure perturbations inside the conduction zone is included,
the same way as in Eq. (4), by introducing a reduction factor
e kV tc−  into the right-hand side of Eq. (2). As a result, the
equation describing the evolution of the ablation-front distor-
tion takes the following form:

d kV d k
p

p
c et a t

a

a
s

kV tc2 2 24
0η η ω η

γ
+ + = ( ) −˜

. (7)

Observe that neglecting the reduction factor e kV tc−  yields
solution (6) (except for the vorticity term ηv). Substituting the
solution of Eq. (7) into the definition of the imprint amplitude
gives

    

η η

η η
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where

ˆ ,η = +( )c V V Vs a c
2 2

bl

∆a a sl A V c= ( )2 ,

∆bl bl= ( )2 l A V V ca s ,
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and
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Equation (8) shows that in the presence of the mass ablation,
the imprint amplitude has an oscillatory dependence on the
mode number. For modes with ∆a < 1, the oscillation period
and amplitude are determined by the velocity and acceleration
perturbation growth reduced by the dynamic overpressure and
the mass ablation [the first two terms in Eq. (8)]. For modes
with ∆a > 1, the acceleration and velocity perturbations depos-
ited at the ablation front are damped by the mass ablation
[factor e kV ta−2  in Eq. (6)], and the behavior of such modes are
determined by the vorticity convection from the shock front
[the last term in Eq. (8)]. Figure 80.2 shows a comparison of the
imprint amplitude calculated for conditions specified in Ref. 7
with and without stabilizing effects. Observe a significant
reduction in the imprint growth due to the thermal smoothing
and the mass ablation. To apply Eq. (8) to the ICF target
designs, the blowoff velocity is taken to be6,11

V V kLabl = ( )( )[ ]µ ν ν
0

1
,

where ν is the power index for thermal conduction, L0 is the
characteristic thickness of the ablation front,

µ ν ν νν= ( ) +( ) +2 1 1 0 121 2Γ . ,

and Γ(x) is the gamma function. The parameters L0 and ν are
obtained by using the fitting procedure described in Ref. 11.
For a direct-drive, “all-DT,” α = 3, NIF cryogenic target
design,7 the 1-D numerical simulations and the fitting proce-
dure give Va = 2.5 µm/ns, Vc � 30 µm/ns, cs � 37 µm/ns, L0 �
0.03 µm, and ν � 2. The imprint efficiency calculated by using
Eqs. (3), (5), and (8) is plotted in Fig. 80.2 (solid line). For
comparison, the results of the 2-D ORCHID12 simulations of
single-wavelength imprint amplitudes (dashed line) are shown
on the same plot with the model prediction. Observe that the
developed model accurately reproduces the oscillatory behav-
ior of the imprint growth. Next, using Eq. (8), the integrity
factor is calculated to be   �0

21 2 10imp = × −. . Since the outer-
surface roughness and also the perturbation “feedout” from the
inner surface13 make an additional contribution to the rms
nonuniformity, the total integrity factor is expected to exceed
the stability threshold   �0

max, thus an additional reduction in
the imprint amplitude is required for a successful implosion. A
significant improvement in beam uniformity has been made in
recent years by introducing SSD14 (smoothing by spectral
dispersion) and ISI15 (induced spatial incoherence) smoothing
techniques. To include the effect of SSD in our simulations, the
intensity nonuniformities have been reduced by factor

t t tc c +( )4

that gives on average a reduction in rms nonuniformity

σ σ= t tc avg 0,

where the coherence time is taken to be14

t kc = ( )[ ]−∆ν δsin ,2
1

∆ν is the bandwidth, tavg is the averaging time, and δ is the
speckle size. Simulations show that using the 2-D SSD smooth-
ing technique with 1-THz laser bandwidth reduces the integ-
rity factor to   �0

310imp = − , which is a factor of 10 lower than
the threshold �0.

In summary, a model describing the evolution of the laser
imprint was developed. The model shows that the imprint
growth is determined by the velocity and acceleration pertur-

Figure 80.2
Plot of imprint amplitude versus mode number calculated using Eqs. (3), (5),
and (8) (solid lines) and 2-D ORCHID simulation (dashed line) for a direct-
drive, “all-DT,” α = 3, NIF target design.

TC5225

10 20 50 100 200 500

Mode number

10.00

1.00

0.10

0.01Im
pr

in
t a

m
pl

itu
de

Classical

Thermal
smoothing

Thermal
smoothing

and ablation



MODELING LASER IMPRINT FOR INERTIAL CONFINEMENT FUSION TARGETS

190 LLE Review, Volume 80

bations generated by the laser-beam nonuniformities. Thermal
smoothing inside a hot plasma corona suppresses only the
acceleration perturbation, while the mass ablation suppresses
both velocity and acceleration perturbations. The model pre-
dicts that a direct-drive cryogenic NIF target will remain intact
during the implosion when the laser is smoothed with 1-THz
SSD used in current direct-drive target designs.

ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy Office of

Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-
92SF19460, the University of Rochester, and the New York State Energy
Research and Development Authority. The support of DOE does not consti-
tute an endorsement by DOE of the views expressed in this article.

REFERENCES

1. J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and
Energy Gain Using Indirect Drive (Springer-Verlag, New York, 1998).

2. J. Sanz et al., Phys. Fluids 31, 2320 (1988); W. M. Manheimer, D. G.
Colombant, and J. H. Gardner, Phys. Fluids 25, 1644 (1982).

3. R. Ishizaki and K. Nishihara, Phys. Rev. Lett. 78, 1920 (1997).

4. R. J. Taylor et al., Phys. Rev. Lett. 79, 1861 (1997); A. L. Velikovich
et al., Phys. Plasmas 5, 1491 (1998).

5. J. Sanz, Phys. Rev. E 53, 4026 (1996); V. N. Goncharov, R. Betti,
R. L. McCrory, P. Sorotokin, and C. P. Verdon, Phys. Plasmas 3,
1402 (1996); A. R. Piriz, J. Sanz, and L. F. Ibanez, Phys. Plasmas 4,
1117 (1997).

6. V. N. Goncharov, Phys. Rev. Lett. 82, 2091 (1999).

7. S. V. Weber, S. G. Glendinning, D. H. Kalantar, M. H. Key, B. A.
Remington, J. E. Rothenberg, E. Wolfrum, C. P. Verdon, and J. P.
Knauer, Phys. Plasmas 4, 1978 (1997); R. P. J. Town, F. J. Marshall,
J. A. Delettrez, R. Epstein, P. W. McKenty, D. D. Meyerhofer, P. B.
Radha, S. Skupsky, and C. Stoeckl, Bull. Am. Phys. Soc. 43,
1666 (1998).

8. V. N. Goncharov, R. Betti, J. A. Delettrez, P. W. McKenty, S. Skupsky,
and R. P. J. Town, “Stability Analysis of Directly Driven OMEGA
and NIF Targets,” to be submitted to Physics of Plasmas.

9. R. Epstein, J. Appl. Phys. 82, 2123 (1997).

10. K. A. Brueckner and S. Jorna, Rev. Mod. Phys. 46, 325 (1974); S. E.
Bodner, J. Fusion Energy 1, 221 (1981).

11. R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, Phys.
Plasmas 5, 1446 (1998).

12. R. L. McCrory and C. P. Verdon, in Computer Applications in Plasma
Science and Engineering, edited by A. T. Drobot (Springer-Verlag,
New York, 1991).

13. R. Betti, V. Lobatchev, and R. L. McCrory, Phys. Rev. Lett. 81,
5560 (1998).

14. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and
J. M. Soures, J. Appl. Phys. 66, 3456 (1989); S. Skupsky and R. S.
Craxton, Phys. Plasmas 6, 2157 (1999).

15. R. H. Lehmberg, A. J. Schmitt, and S. E. Bodner, J. Appl. Phys. 62,
2680 (1987).


