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The effect of hydrodynamic instabilities on the performance of
inertial confinement fusion (ICF) experiments is well known.
Hydrodynamic instabilities affect ICF capsules during the
initial acceleration and final deceleration phases of the implo-
sion. Nonuniformities in the applied drive coupled with imper-
fections at the target surface seed Rayleigh–Taylor (RT) unstable
growth at the ablation front. In addition, the shock wave
reflecting off a perturbed inner ice surface returns to the
ablation region and also seeds the instability (feed-out). These
perturbations grow since low-density, ablated material accel-
erates the unablated, dense shell. Further growth of these
perturbations eventually feeds through the shell and couples
with existing perturbations on the inner ice surface. Together
these seed RT growth at the ice–gas interface when the ice layer
begins to decelerate around the spark plug region near the
target’s center. As the RT instabilities grow, the cold, dense fuel
is mixed into the hot core leading to cooling of the core and
reduced target performance.

The success of the ICF program depends on targets de-
signed to limit the amount of RT growth to an acceptable value
or whose performance is insensitive to the presence of such
perturbations. A good understanding of all nonuniformity
sources in the implosion is required to design such targets.
Nonuniformity sources include the laser or holhraum drive, the
coupling of this energy to the target (imprint), and the initial
surface finish of both the outer ablator surface and the inner DT
ice. To date, significant progress has been made in understand-
ing the role of the first three nonuniformity sources. Character-
ization of the inner ice surface, however, remains a serious
challenge. The ability to accurately characterize this surface is
especially critical in light of recent work by Betti1 in which the
feed-out contribution to the ablation region has been shown to
be a major factor in overall RT growth during an implosion.

Overview
Cryogenic targets imploded with OMEGA will consist of

polymer capsules several micrometers thick with diameters
ranging from 900 to 1100 µm. These capsules will be filled
with condensed D2 or DT fuel up to 100 µm thick. Historically,
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the fuel content and fuel-layer uniformity of cryogenic targets
at LLE have been interferometrically characterized using plane-
wave illumination.2–7 A capsule with a thick cryogenic layer
condensed on its interior behaves as a strong negative lens,
which has several adverse effects on an interferogram created
with plane-wave illumination. Computer simulations of typi-
cal interferograms are shown in Fig. 79.14. The highly diver-
gent and spherically aberrated wavefront created by the target
cannot be effectively collected and imaged by optics with
convenient numerical apertures (<0.2), resulting in loss of
information near the perimeter of the target’s image. Addition-
ally, interfering this highly curved wavefront with a planar
reference wavefront results in an interferogram with a fringe
spatial frequency that increases radially to very high values
near the perimeter of the target’s image. The phase sensitivity
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Figure 79.14
Computer-generated interferograms of a 1120-µm-diam, 10-µm-thick cap-
sule that contains 100 µm of condensed fuel. These interferograms were
created assuming that both the object and reference beams consisted of planar
wavefronts with a 514-nm wavelength, and that f/6 optics were used to image
the target. All of the surfaces in (a) were perfectly concentric with one
another, whereas (b) displays a 5% fuel nonconcentricity, i.e., the center of
the spherical inner surface of the condensed fuel layer has been displaced to
the right in the figure by 5% of its total thickness. Obviously, a 5%
nonconcentricity can be easily detected, but higher-order nonuniformities are
much more difficult to detect due to the very high fringe frequency. In
addition, information regarding the state of the fuel near the perimeter of the
target’s image has been lost due to refraction of the object beam outside of the
imaging optics’ finite collection aperture.
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is reduced dramatically when the fringe frequency approaches
the Nyquist limit of the detector. As the fringe frequency nears
the frequency of pixels in the CCD array, aliasing occurs and
the fringes become unresolved.

These limitations can be compensated for by focusing the
object beam of a Mach–Zehnder interferometer near the rear
focal point of the filled target, causing a nearly collimated
beam to emerge. A complete description of this interferometer
has been published elsewhere.8 The optical system used to
create an interferogram of a cryogenic target with convergent-
beam illumination is shown in Fig. 79.15.
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Figure 79.15
Schematic of the optical system used to create an interferogram of a cryogenic
target with convergent-beam illumination. The optics that control the point of
focus of the convergent beam and those that image the target are shown. The
dashed line denotes the collimated reference beam.

Phase sensitivities of the order of a few hundredths of a
wave can be achieved by phase-shifting techniques.9–11 This
involves sequentially acquiring multiple interferograms, each
with a unique phase offset caused by introducing a slight path-
length change in one of the interferometer’s arms. The phase of
each point in the interferogram is then obtained, modulo 2π, by
performing simple mathematical operations on the set of
interferograms. One advantage of phase-shifting methods is
that the phase resolution depends primarily on the dynamic
range of the CCD array and the contrast of the interferogram,
not the number of pixels per fringe.

Methodology
Characterizing a nonuniform cryogenic-fuel layer by inter-

preting the phase of a wavefront perturbed by passing through
it is, unfortunately, not straightforward. Evident in Fig. 79.16,
the majority of rays traveling through the target have probed
two independent ice surfaces on opposite sides of the target.

Unique measurement of a perturbation on either surface is impos-
sible without collecting an enormous number of interferograms.

The method we propose is very similar to the technique
implemented by Wallace12 to characterize surface perturba-
tions on the outside of ICF capsules. Data is first collected
using atomic force microscopy (AFM) along great circles on
the target surface. This information is Fourier-analyzed to
produce an average one-dimensional (1-D) power spectrum.
The 1-D Fourier power spectrum is then mapped into the two-
dimensional (2-D) spherical-harmonic spectrum by using an
Abel transformation derived by Pollaine.13 Pollaine showed
that a 1-D Fourier power spectrum, representative of the entire
surface, could be transformed into the corresponding 2-D
power spectrum using

P l
l

P l n n2 D− −( ) = +( )∫
d

d
dD1

2 2 .

MacEachern14 showed that a representative 1-D power
spectrum could be obtained by averaging nine independent,
experimental 1-D power spectra together. These nine traces are
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Figure 79.16
Ray trace of an f/5 laser through an OMEGA cryogenic capsule. The method
uses rays very near the perimeter of the target similar to the dashed rays in the
figure. Such rays probe two points on the inner surface, which, when
averaged, represent two of the scans used in the outer-surface-measurement
technique described in the text.
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arranged in groups of three and are taken along great circles
that lie on the three orthogonal planes that intersect the target’s
center. Each set of three traces samples an approximately
40-µm-wide swath on the target’s surface. The geometry used
in this data-acquisition method is shown in Fig. 79.17 with the
three traces within a set labeled A, B, and C.
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Figure 79.17
Geometry of data-acquisition traces used in the surface-characterization
method. Each of the three sets of traces lies along an orthogonal direction on
the sphere. The width between outer traces is approximately 40 µm.

Reexamining Fig. 79.16, it can be seen that there is a subset
of rays, traveling very near the equator of the target, where a
small cord (~40 µm long) probes two points of the inner ice
surface. Such a ray is shown dashed in Fig. 79.16. The per-
turbed optical-path difference (OPD) along this path repre-
sents an average at the two positions. Collecting all of these
rays from the overall phase map yields a great circle of data,
coming out of the paper, sampling the inner ice surface near
the equator at this orientation. This is essentially the same as
averaging traces A and C in the method described above and
shown in Fig. 79.17. The target is rotated and data is collected
along several great circles. This data is analyzed using the
process described above for characterizing an outer-surface
perturbation spectrum.

Implementation
To implement the characterization method described above,

the phase of the wavefront passing through the cryogenic target
must be acquired by interferometrically measuring the OPD
between it and a planar reference wavefront. Eventually, when
the cryogenic filling station at LLE is in operation, this infor-
mation will be provided by measuring real ICF capsules. Initial
analysis, however, has been done using synthetic OPD maps
produced using the ray-trace simulation code Rings. Rings,

which was written by Craxton15 to simulate three-dimensional
(3-D) planar interferometric probes, was modified to provide
for a convergent f/5 probe at 670 nm. The capsule used in our
analysis is equivalent to that of a cryogenic target designed to
be used in initial experiments on OMEGA. The capsule con-
sists of a thick shell of DT ice (100 µm) surrounded by a single,
thin layer of plastic (1 to 5 µm). Fully independent perturba-
tions can be applied to any or all interfaces within the target.
Originally, these perturbations were limited to simple geomet-
ric terms of the order of less than 4. Routines have since been
added that allow perturbations to be imposed based on their
complete spherical-harmonic spectrum. Normalization rou-
tines control the total applied ice-surface roughness (rms) and
spectral dependency of the modal pattern. Multiple, indepen-
dent great circles can be simulated by aligning the probe axis
with respect to selected points on the target.

Rings determines the intersection of a ray at every physical
interface within the target to within 1 Å. Once the intersections
are determined, the total optical path is calculated for the transit
through the preceding layer. Snell’s Law is then applied to pro-
duce the proper change in direction cosines for transit into the
next layer. Rings traces many rays through the target and into
a collection optic. The resulting phase map is then projected
back to an image plane located at the center of the target, which
is conjugate to the detector plane in the actual interferometer.

The OPD map must first be analyzed to identify a radius
that corresponds to the inner ice surface. As can be seen in
Fig. 79.16, this information is near the very edge of the map.
Rays that intersect the target at steeper angles are refracted
outside of the collection aperture of the interferometer’s f/5
imaging system. Once identified, this information is not nec-
essarily uniformly spaced along a circle; it must then be
interpolated to a great circle of 2n evenly spaced points to be
analyzed by standard FFT routines. Many interpolation
schemes were tested. A solution was found that imports the
data into the commercially available graphics package
Tecplot.16 Tecplot runs on Pentium PC’s and has extensive
capabilities to interpolate data to a variety of physical grids,
including evenly spaced circles. The interpolated data is then
Fourier-analyzed to recover a 1-D power spectrum. The over-
all procedure to analyze a given OPD takes only a few minutes
per view. It is anticipated that an averaged 1-D power spec-
trum, evaluating six views (as shown in Fig. 79.18), could be
obtained in less than one-half hour. The final step—transform-
ing the averaged 1-D power spectrum into the 2-D spectrum—
is accomplished using a Fortran program and requires only a
few minutes of computer time.
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Numerical Results
The first test of the method described above was to perturb

the inner ice layer with pure sinusoidal modes to determine
whether the FFT of the great circle of the synthetic OPD would
return the applied value. Such a test does not require the Abel
transformation. Initially, only single sinusoidal modes (m = 20,
40, and 80) were modeled. The results, shown in Fig. 79.19,
demonstrate that the method is able to reproduce the applied
perturbation quite well. The next step was to perturb the target
with a whole spectrum of sinusoidal modes given by

R R a m m b m1 0 0
1 1 2= + + ( )[ ]{ }−∑ . cos ,ϕ π

where a0 = 0.739 µm and b(m) is a random number used to
distribute random phase among the modes. The result of these
tests, shown in Fig. 79.20, indicate that the method is able to
recover the applied sinusoidal spectrum very well.

Building on these results, tests were constructed that would
more closely match what one would expect in nature. The
pertinent values that are required for numerical simulation of
ICF capsules are the total rms and the modal dependency of the
overall spherical-harmonic spectrum. As such, several ex-
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Figure 79.18
Schematic indicating the data-acquisition procedure. The probe laser is
incident on the target at an angle of 17.72° below the equator. After collecting
data for the position, the target is rotated on-axis 30° and scanned again. The
procedure is repeated until six scans are completed.

Figure 79.19
Mode amplitudes of OPD determined through ray trace of targets with inner-
ice surface perturbed with an individual sinusoidal mode. The amplitudes of
the applied perturbations were chosen to scale as 2000/m nm.

Figure 79.20
Mode amplitudes of OPD determined through ray trace of targets with inner-
ice surface perturbed with a spectrum of sinusoidal modes between mode m
= 10 and m = 50. The solid curve represents the exact modal spectrum that was
applied to the surface.

amples were constructed using a variety of total roughness and
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ized to return the desired surface rms. The spectral amplitudes
were modified in the high-frequency range by applying a
Blackman filter17 to avoid Gibb’s phenomenon behavior in the
numerical reconstruction of the applied spectrum.

An important point to these calculations is the determina-
tion of a cutoff frequency above which any additional modes
make little contribution to the overall perturbation at stagna-
tion and, as such, need not be resolved. This cutoff is generally
taken to be near mode 50. This cutoff comes from stability
arguments of target designs that assume monotonically de-
creasing perturbation spectra of the order of l−β at the begin-
ning of the deceleration phase of the implosion. For β = 1.5, the
relative mode amplitudes at about mode 40 and beyond are one
to several orders of magnitude lower than the amplitudes of
mode numbers below 10. When Haan saturation effects18 are
considered, however, it can be shown that such a cutoff is
applicable for perturbation spectra that are even flat (β = 0) at
the onset of deceleration (see Appendix A). Therefore, our
analysis, while examining targets with perturbations using
modes 2 to 192, resolves only the modal region of the ice
roughness between modes 2 and 50.

Similar to the above sinusoidal perturbation tests, our first
test with spherical harmonics was to perform an analytical

Figure 79.22
Comparison of several ray-trace evaluations of an OMEGA cryogenic cap-
sule with a spherically perturbed inner ice surface. The thick solid curve
represents the exact modal spectrum applied to the inner surface. The other
curves are obtained by averaging a set (six numerical ray traces) of 1-D power
spectra of perturbed OPD and then transforming that average into the 2-D
power spectrum. Each curve represents the resulting modal amplitudes
obtained at a separate orientation on the target. These orientations are given
in Table 79.II.

Figure 79.21
Evaluation of an analytical representation of a spherically perturbed inner ice
surface. The solid curve represents the exact modal spectrum applied to the
surface. The dashed curve is obtained by taking the FFT of the perturbed
radius and transforming the 1-D power spectrum into the 2-D power spec-
trum. Except for the high-frequency regime, the method can be very accurate
in resolving the 2-D applied perturbation using 1-D data.

check of the method. Knowing the analytic form of the pertur-
bation spectrum placed on the inner ice layer, we could imme-
diately take the Fourier transform of the resulting perturbed
radius representing the inner target equator. This 1-D power
spectrum was then transformed to give back the applied 2-D
spectrum. The results of this case are shown in Fig. 79.21,
where it can be seen that the method gives very good recon-
struction of the applied spectrum except in the very high
frequency range. Here the method experiences slight trouble in
reconstructing the spectrum. The numerical results here are
being strongly influenced by the unphysical termination of the
spectrum. The results of this test confirmed that a good ap-
proximation of the 2-D spectrum of the inner ice surface could
be obtained from ray-trace data that correctly maps a great
circle of the inner ice surface.

We then examined ray-trace tests that spanned both the rms
of the surface and the modal dependency of the spectrum. The
results of one of these tests are reported here. When the
spherical harmonics are applied, the amplitude of all m-com-
ponents of a particular l-mode is assumed constant. Addition-
ally, a base-line total rms value used here is defined to include
only the power in modes 10 to 50. Several examples, compar-
ing the numerically obtained modal amplitude spectrum with
the exact applied perturbation, are shown in Fig. 79.22. The
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capsule was perturbed with a full spectrum of modes from
l = 2 to l = 192. The baseline total rms was set to be 0.25 µm
with a spectral parameter β = −1.5. Four tests (Cases A–D)
were performed, representing the acquisition of data at differ-
ent spherical orientations on the capsule. Each case used six
acquired ray traces taken about the capsule to produce the
average 1-D power spectrum for the analysis. The spherical
orientations are given in Table 79.II. Examining Fig. 79.22, it
can be seen that each of the tests provides a very good
representation of the modal dependency of the applied pertur-
bation. Case B recovered 89% of the total rms defined from
modes 2 to 50, while Case C recovered only 73%. From these
results, it can be seen that the method provides good resolution
of the perturbations on the inner ice surface.

Future Work
The method we have described will provide a detailed

analysis of the inner-ice-surface roughness; however, more
work must be performed to determine the sensitivity of the
method under a variety of physical constraints. Aberrations in
the wavefront caused by the optical system have not been
included in the model so far. These can potentially be sub-
tracted from the target’s phase map by taking a phase map of
the wavefront passing though the interferometer without a
target present. The shot noise and finite resolution of the CCD
array detector (i.e., their role in limiting the phase sensitivity of
the interpolation routine) should also be examined. Finally, the
limitation that perturbations on the surfaces of the capsule
impose on the sensitivity of ice-surface measurements should
be examined.
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Appendix A
To determine the critical modes that make up the perturbed

interface between the cold, dense fuel and the hot spark-plug
region, the RT growth that all modes experience during the
deceleration phase in an ICF implosion must be examined. We
start by assuming a modal dependency between the modes that
is of the form

  
σ βl

l
= C1 .

Given the total surface perturbation σrms, one can integrate
over the modes (from 2 to 500) to arrive at the constant C1 as

  

C1

2
1

=
∑

σ

β

rms

l

.

Lindl19 has shown that during deceleration any unsaturated
modes will grow roughly as

  
a a el l

lin = ( )0
η ,

where

  
η =

+
2

1 0 2

l

l.
.

One can see that η asymptotes quickly to the value η ≅ ( )10 3~
at about mode 20. As such, in the absence of saturation, all
modes above 20 will grow roughly the same. If one assumes the
initial perturbation spectrum to be comparable to the initial ice
surface, the spectral parameter β can be set to be ~1.5. While
most of the modes will grow the same, the final amplitudes of
modes greater than 40, as shown in Fig. 79.A1, are relatively

Table 79.II: Orientation angles used in numerical ray-trace tests. Cases A and B represent scans at two orthogonal positions
on the sphere. Case C was chosen as a neutral position between A and B. Finally, Case D is for scans along the
optical axis proposed for the experimental characterization station at LLE.

(selgnAnoitatneirO θ,Φ)

esaC 1nacS 2nacS 3nacS 4nacS 5nacS 6nacS

A 0,09 03,09 06,09 09,09 021,09 051,09

B 09,09 09,06 09,03 09,0 081,03 051,09

C 0,09 03,57 06,06 09,54 021,06 051,57

D 0,82.27 03,82.27 06,82.27 09,82.27 021,82.27 051,82.27
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Figure 79.A1
(a) Final linear-growth-amplitude spectrum of perturbations with initial
amplitudes of the form σ β

l l= C1 .  Here C1 has been normalized to give
1 µm at l = 2 for all cases of β. (b) Saturation threshold (mode number) for
various cases of total σrms as a function of the spectral parameter β. Note that
for β > 1, only modes l > 100 are candidates for saturation. As the initial
spectrum flattens and more power is shifted from lower mode numbers into
higher ones, modes above l = 20 can become candidates for saturation. As β
falls below 1.0, saturation can be expected to play an increasing role in
determining the final perturbation spectrum at stagnation.

very small. As such, these modes lend no significant contribu-
tion to the overall perturbation at stagnation; however, the
initial spectrum involved must also include contributions from
perturbations feeding through from the ablation surface. These
perturbations will add in quadrature with the ice layer, and the
resulting perturbation rms will probably no longer obey β
= 1.5. As shown in Fig. 79.A1, the final amplitude spectrum of
these perturbations increases monotonically with decreasing
β. While it is hard to conceive of β ever being negative, having
β approach zero must be considered.

Of course, as the spectral parameter does approach zero,
more power is shifted out of the low-order modes and into the
higher-frequency modes. These modes will then become can-

didates for saturation. Haan has shown18 that, for a specific
mode, as the amplitude approaches its saturation amplitude

  
a

R
l l
sat =


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2
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its RT growth undergoes a transition and stops growing expo-
nentially. The amplitude of this perturbation then grows lin-
early in time and is given by
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Therefore, such modes will grow much slower than unsatur-
ated ones and will not contribute significantly to the overall
perturbation at stagnation.

A threshold for saturation can be calculated by comparing
the Haan saturation amplitude at a given radius to the given
perturbation rms at that point:

  

2 4

2 1
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2 12 1
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C
c c c
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where lc is defined as the modal saturation threshold. Perform-
ing some algebra, assuming 2 lc >> 1, and defining

C
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we have

  lc RC= ( ) −( )
2

1 1 5.
.

β

Assuming R ~ 200 µm, we can graph the saturation threshold
for a variety of initial perturbation rms and spectral parameter
β. Such results are plotted over the spectral behavior in
Fig. 79.A1. From this graph it can be seen that for β below 1.0,
saturation can be expected to play a role in determining the
perturbation spectrum at stagnation. For values of β above 1.0,
saturation no longer aids in limiting the growth of modes below
100; however, as was pointed out above, in this regime the
modal amplitudes fall off quickly with increasing mode num-
ber and, as such, will not contribute at stagnation.
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A fully integrated measure of the importance of the modal
spectrum can be attained by examining the mode number at
stagnation at which the integral of power up to that mode
represents 95% of the total perturbed power. A full stability
analysis was performed for a variety of spectral parameters β
and initial perturbation rms to obtain such a cutoff. The results,
shown in Fig. 79.A2, clearly show that, for expected values of
β (0.5 to 1.5), 95% of the total power resides in modes less
than 50. For values of β below 0.5, the cutoff mode number
does climb above 50, but it is well contained below mode 100
for expected rms values.

rms( m)

(l = 2–500)

1.0

1.5

4.0

C
ut

of
f 

m
od

e 
nu

m
be

r 
l c

60

80

100

20

40

0
0.0 0.5 1.0 1.5 2.0

Spectral exponent
TC5116

 β

σ µ

Figure 79.A2
Cutoff mode number at stagnation at which the integral of perturbed power
up to that mode represents 95% of the total perturbed power. For expected
values of total σrms (0–4 µm) and β (0.5–1.5), 95% of the total power
resides in modes less than 50. For values of β below 0.5 the cutoff mode
number does climb above 50, but it is well contained below mode 100 for
expected rms values.
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