Contents

In Brief .. iii
Direct-Drive Target Designs
for the National Ignition Facility .. 121
Numerical Investigation of Characterization of Thick
Cryogenic-Fuel Layers Using Convergent Beam
Interferometry .. 131
Studies of Target Implosion Using K-Shell Absorption
Spectroscopy of an Embedded Titanium Layer 139
Experimental Investigation of Smoothing by
Spectral Dispersion .. 149
Nonlinear Evolution of Broad-Bandwidth, Laser-Imprinted
Nonuniformities in Planar Targets Accelerated by 351-nm
Laser Light ... 156
Uniaxial/Biaxial Stress Paradox
in Optical-Materials Hardening .. 174
Observation of Electron Trapping
in an Intense Laser Beam .. 180
Publications and Conference Presentations
In Brief

This volume of the LLE Review, covering the period April–June 1999, features a theoretical analysis of
direct-drive target performance on NIF. In this article R. P. J. Town, J. A. Delettrez, R. Epstein, V. N.
Goncharov, R. L. McCrory, P. W. McKenty, R. W. Short, and S. Skupsky detail ignition target designs
developed at LLE specifically to achieve successful direct-drive ignition on the NIF facility. A baseline
“all-DT” target design is described along with a two shock compression analysis, which includes
discussion of the parameters leading to variability in shock timing. The modeling and analysis presented
flow down to specification requirements for the laser and target parameters to ignite this baseline target
design with the NIF laser.

Additional highlights of the research presented in this issue are

- P. W. McKenty, M. D. Wittman, and V. N. Goncharov discuss the measurement of one of the critical
parameters contributing to the performance of cryogenic DT targets: the uniformity of the inner ice
surface. A numerical analysis is described that follows from a novel optical technique used to isolate
the surface under investigation and resolve perturbations at the relevant level.

- B. Yaakobi, V. A. Smalyuk, J. A. Delettrez, and R. P. J. Town summarize the use of an embedded
titanium layer in spherical targets to determine the areal density of the compressed shell. Target
performance enhancement with the SSD beam-smoothing effect turned on is characterized with this
method. A recently developed pinhole-array x-ray spectrometer captures core images below and above
the K-edge energy of titanium. Results are compared with 2-D ORCHID simulations.

T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk present techniques to
characterize the laser-irradiation nonuniformity on OMEGA using time-integrated UV equivalent-
target-plane imaging. A comparison of observed 2-D SSD beam-smoothing rates and theoretical
predictions for the 0.2-THz SSD system currently on OMEGA permits confident extrapolation to
larger-bandwidth smoothing effects.

Meyerhofer, D. Oron, D. Shvarts, Y. Srebo, and R. P. J. Town discuss the growth and imprinting
characteristics of planar targets in the presence of the three beam-smoothing effects available on
OMEGA. Throughfoil radiography was used to observe the saturation of 3-D perturbations produced
by laser imprinting; the results were compared to those predicted by the Haan model.
• F. Dahmani, A. W. Schmid, J. C. Lambropoulos, S. Papernov, and S. J. Burns, present experimental results on the changes in the thresholds for initiation of crack formation as well as propensity for crack growth in fused silica and BK7 glasses under applied stress. Biaxial applied stress is shown to raise damage thresholds by significant amounts for these optical materials common to fusion-class laser systems.

• J. L. Chaloupka and D. D. Meyerhofer discuss the trapping of high-energy electrons in a single-beam ponderomotive optical trap. Thomson-scattered light from the electron trap was enhanced through the use of a novel trapping focus of the laser. The scatter distribution is compared with simulations for ordinary and trapping-focus beams.

Samuel F. B. Morse
Editor