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Laser-fusion experiments require precise control of the tempo-
ral profile of optical pulses applied to targets. An optical pulse–
shaping system has been in operation on OMEGA for several
years.1 During this time the demands on the precision, flexibil-
ity, and repeatability of the optical pulse–shaping system have
steadily increased. To meet these new demands, a new pulse-
shaping system based on an aperture-coupled stripline (ACSL)
electrical-waveform generator has been developed and dis-
cussed previously.2 This new system will be implemented on
OMEGA in the next few months. In addition to its simplicity,
the new system will include significant improvements to the
modeling, performance, and diagnostics of the pulse-shaping
system to meet the challenging demands required of the sys-
tem. The shaped optical pulses produced by this system be-
come the seed pulses that are injected into the OMEGA laser
system. Details of the on-target pulse shape from the OMEGA
laser are critically related to the details of the seed-pulse shape.
This article describes the modeling of an ACSL pulse-shaping
system that is used to produce an optical seed pulse with a
specified temporal shape.

An ACSL generates temporally shaped electrical wave-
forms that are applied to electro-optic modulators to produce
shaped optical pulses. The electro-optic modulators exhibit a
finite response time to an applied voltage. This response time
has been measured and is included in the calculation of the
voltage waveform required from the ACSL to produce a
specific optical pulse shape. An ACSL is modeled as two
coupled and interacting striplines. Striplines are modeled as
transmission lines that obey a set of equations known as the
telegraph equations.3 A new approach to solving the telegraph
equations using the method of characteristics is presented here
along with a straightforward extension of this approach to
ACSL’s. The modeling presented here leads to a prescription
for determining the necessary ACSL geometry to produce a
desired on-target pulse shape on OMEGA.

The Optical Modulator Voltage Waveforms
Given the temporal profile of the optical pulse required on

target from the OMEGA laser, the temporal profile of the
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optical seed pulse that must be produced by the pulse-shaping
system is determined from the extensive modeling of the laser
system that has evolved over the years. As shown in Fig. 78.41,
this low-energy optical seed pulse is shaped by applying
shaped voltage waveforms to a dual-channel electro-optic
amplitude modulator synchronous with the transit through the
modulator of an optical pulse from a single-longitudinal-mode
(SLM) laser.4 If we neglect the finite response time of the
modulator, the intensity profile of an optical pulse exiting a
modulator is given by
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where Iin(t) is the intensity profile of the optical pulse sent into
the modulator from the SLM laser; the two sine-squared
factors represent the transmission functions of the two modu-
lator channels with V1(t) the voltage waveform applied to
channel 1 of the modulator, V2(t) the voltage waveform applied
to channel 2 of the modulator, Vπ the half-wave voltage of the
modulator (typically less than 10 V), and φ1 and φ2 the offsets

E8891
Shaped optical pulse

Optical
modulator

SLM laser

Electrical square-
pulse generator ACSL

Electrical square-
pulse generator

Gate Shaped
electrical
waveform

Figure 78.41
The aperture-coupled-stripline (ACSL) optical pulse–shaping system. The
output from an electrical square-pulse generator is temporally shaped by an
ACSL and used to drive an optical modulator. A separate electrical square-
pulse generator is used to gate the second channel of the modulator.



THE DESIGN OF OPTICAL PULSE SHAPES WITH AN APERTURE-COUPLED-STRIPLINE PULSE-SHAPING SYSTEM

98 LLE Review, Volume 78

set to zero by the application of a dc bias to each of the
modulator channels. The input intensity profile to the modula-
tor is assumed to be unity for our application since the short-
duration (<5 ns) voltage waveforms V1(t) and V2(t) are applied
to the modulators during the peak of the 200-ns Gaussian
optical pulse from the SLM laser.

On one channel of the modulator, a shaped electrical wave-
form from an ACSL is applied. The exact shape of the voltage
waveform required from the ACSL is determined by the shape
of the optical pulse required from the modulator and by the
response of the modulator to an applied voltage. This channel
is referred to as the shaping channel of the modulator. On the
other channel of the modulator, a square electrical waveform
is applied. This channel is intended to produce a square optical
waveform that acts as a gate to block unwanted pre- and post-
pulses from the modulator and enhances the contrast of the
output shaped optical pulse from the modulator. This channel
of the modulator is referred to as the gate channel. The optical
pulse produced by the gate channel should ideally have a fast
rise and fall time with constant amplitude over its duration. The
application of a square electrical pulse (with 45-ps rise time) to
this channel from a pulse generator (Model 10,050A from
Picosecond Pulsed Laboratories, Boulder, CO) produces the
optical pulse shape shown in Fig. 78.42. This figure reveals the
bandwidth limitations of the modulator for this “ideal” (high-
bandwidth) square input electrical pulse. In particular, the
optical pulse from this channel does not reach its full amplitude
during the first 200 to 300 ps of the pulse, which, if not properly

compensated for, can cause pulse distortion on the beginning
of a shaped optical pulse and severe pulse distortion for short-
pulse generation. This distortion caused by the modulator
bandwidth limitation is minimized by including this effect
when calculating the voltage waveform applied to the
modulator’s shaping channel as discussed below.

Numerical Solution of the Telegraph Equations
Transmission line problems can be classified into two

categories. The first category deals with determining the trans-
mission line properties required to produce a specific elec-
trical waveform reflected from the line, given the input
electrical waveform to the line. The second category is the
reciprocal of the first and deals with determining the electrical
waveform reflected from a transmission line, given the input
electrical waveform to the line and the properties of the
transmission line.

In the present OMEGA pulse-shaping system, shaped elec-
trical waveforms are generated by the reflection from a vari-
able-impedance micro stripline and sent to the shaping channel
of the modulator.2 The micro striplines are designed using a
layer-peeling technique that treats the micro stripline as a
simple transmission line.5 This technique allows one to calcu-
late the reflection coefficient along the line (and from that the
electrode width) needed to synthesize a given electrical wave-
form in reflection. The reciprocal of this calculation is to
determine the electrical waveform reflected from a transmis-
sion line given the reflection coefficient along the line. This
latter calculation is discussed here and, in the next section, will
be extended to include modeling ACSL’s to generate shaped
electrical waveforms.

In this section we develop the equations that describe the
electrical waveforms propagating along a transmission line
starting from the well-known telegraph equations for the line.3

First we model a stripline or micro stripline as a transmission
line that obeys the telegraph equations:
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where v is the voltage along the line, i is the current flowing
along the line, L is the inductance per unit length along the line,
and C is the capacitance per unit length along the line. In these

Figure 78.42
The measured optical pulse shape from a single channel of an electro-optic
modulator with a square electrical waveform applied to the RF port. The
square electrical waveform has a rise time of 45 ps.
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equations we introduce the characteristic impedance of the line
Z x L x C x( ) = ( ) ( )  and the wave propagation velocity
d dx t c LC= =1  along the line. We assume that the propa-
gation velocity c (not to be confused with the speed of light)
along the line is constant. With these substitutions Eqs. (2)
become

∂ ( )
∂

= − ( ) ( ) − ∂ ( )
∂

V x t

x
k x V x t c

I x t

t

,
,

,
, (3a)

∂ ( )
∂

= ( ) ( ) − ∂ ( )
∂

I x t

x
k x I x t c

x t

t

,
,

,
,

V
(3b)

where the variables are defined as
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is the reflection coefficient per unit length along the line.

If we add and subtract Eqs. (3), we get a set of reduced wave
equations
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is a wave traveling to the right along the line with velocity c and
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is a wave traveling to the left along the line with velocity c. In
the appendix we show that the form of Eqs. (6) is identical to
the form of the equation obtained if one substitutes a plane
wave with slowly varying amplitude into the wave equation.
Therefore, Eqs. (6) are referred to as the reduced wave equa-
tions and are the main results of this section. In the next section
we show how to extend these equations to model an ACSL and
give a numerical prescription for solving the resulting equa-
tions using the method of characteristics.

Extension to an ACSL
The geometry of an ACSL is shown in Fig. 78.43. In

principle, an ACSL is a directional coupler consisting of two
striplines that are coupled through an aperture in their common
ground plane. In operation, a square electrical waveform is
launched into port 1 and propagates along electrode 1 to the
terminated port 2 of the ACSL. As the square electrical wave-
form propagates along electrode 1 in the coupling region, a
signal is coupled through an aperture to electrode 2 in the
backward direction and exits at port 4. The electrical wave-
form exiting port 4 is sent to the shaping channel of the
modulator and must have the proper temporal profile to pro-
duce the desired optical pulse shape out of the modulator.
By varying the width of the coupling aperture (shown in
Fig. 78.43) along the length of the ACSL, a temporally shaped
electrical waveform can be generated at port 4. The details of
how to calculate the width of this aperture along the line to
produce a specific electrical waveform from the ACSL are the
main topic of this article.

The ACSL is modeled as two coupled transmission lines.
We can extend the formalism in the previous section to an
ACSL by writing four reduced wave equations. Two equations
describe the waves WR1(x,t) and WR2(x,t) traveling to the
right along lines 1 and 2, respectively, and two equations
describe the waves WL1(x,t) and WL2(x,t) traveling to the left
along lines 1 and 2, respectively. In each reduced wave equa-
tion we include the reflection coefficient k(x) along the line as
above, and we introduce a coupling term C(x) that allows for
coupling waves from one line to the other through the aperture.
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The resulting equations are given by
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The coupling coefficient C(x) is the coupling from one line to
the other in the backward direction. In general, another cou-
pling term should be added to the above equations to model
coupling from one line to the other in the forward direction.
This forward coupling term can be trivially added to this
model; however, for directional couplers of this sort, coupling
in the forward direction is negligible.

The reduced wave equations (8) for an ACSL [as well as
Eqs. (6) for striplines] can be solved by transforming them
along the characteristic curves

ξ η= − = +ct x ct x   .and  (9)
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Figure 78.43
Exploded view of a practical four-layer, four-port ACSL. A square electrical waveform is launched into port 1 and propagates along electrode 1 to the terminated
port 2. An electrical signal is coupled through an aperture to electrode 2 in the backward direction, and a shaped electrical waveform exits at port 4.
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For this transformation we use the chain rules

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

= − ∂
∂

+ ∂
∂





x x xξ

ξ
η

η
ξ η

(10a)

and

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

= ∂
∂

+ ∂
∂





t t t

c
ξ

ξ
η

η
ξ η

(10b)

to obtain

dWR

d
WL WL

1
1 2 2

η
η

ξ ξ( ) = − ( ) ( ) + ( ) ( )[ ]k x C x , (11a)

dWL

d
WR WR

1
1 2 2

ξ
ξ

η η( ) = ( ) ( ) + ( ) ( )[ ]k x C x , (11b)

dWR

d
WL WL

2
2 1 2

η
η

ξ ξ( ) = − ( ) ( ) + ( ) ( )[ ]k x C x , (11c)

dWL

d
WR WR

2
2 1 2

ξ
ξ

η η( ) = ( ) ( ) + ( ) ( )[ ]k x C x , (11d)

where we have used the fact that WR1,2 are waves propagating
in the positive x direction and WL1,2 are waves propagating in
the negative x direction and obey wave equations with solu-
tions of the form

WR WR WR1 2 1 2 1 2, , , ,x t ct x( ) = +( ) = ( )η (12a)

and

WL WL WL1 2 1 2 1 2, , , , .x t ct x( ) = −( ) = ( )ξ (12b)

With this transformation the derivatives in Eqs. (11) become
total derivatives.

The coordinate transformation expressed by Eqs. (9) lends
itself to a simple geometric interpretation that leads to a
numerical solution algorithm for the reduced-wave Eqs. (11).
The transformation Eqs. (9) with dx = cdt can be seen to be a
rotation of the x,ct coordinate system by 45° into the ξ,η
coordinate system as shown in Fig. 78.44. In the new ξ,η
coordinate system, Eqs. (11) describe how the right-going
waves WR1,2 evolve in the η direction and how the left-going
waves WL1,2 evolve in the ξ direction. The differential ele-

ment in this new system is seen to be
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x
t
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where we have used dx = cdt. To solve Eqs. (11) numerically,
we define a matrix as shown in Fig. 78.44 for each of the four
waves and write the finite difference equations
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Figure 78.44
An array used by the numerical solution technique to represent a wave
propagating along a transmission line. The value at each location in the array
gives the amplitude of the wave at some fixed position along the line at some
time. Four such arrays are used in the calculation to represent the four waves
propagating in an ACSL.
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where the index i represents the position x along the line and the
index j represents the time t. In these equations, for example,
the value of the matrix element at the location i,j in the WR1
array is the amplitude of the wave WR1 at position x along the
line at time t. Equations (14) give the values of the four waves
at some time, given values of the waves at an earlier time and
the reflection and coupling coefficients (k and C) along the
line. Therefore, given the coupling coefficients and the initial
values of the waves along the line (at j = 0 for all i) and the
values of the waves at the boundaries for all time (at the first
and last i value for all j), Eqs. (14) can be used to find all other
values in the arrays. Knowing all values in the four arrays
determines the amplitudes of the four waves at all locations
along the line for all time. In particular, we specify the right-
going wave on line 1 (the pulse from the pulse generator
applied to port 1), and we calculate the left-going wave on line
2 (the pulse at port 4 that is applied to the modulator shaping
channel). In the next section we show how to apply this
technique to the design of optical pulse shapes from the ACSL
pulse-shaping system.

Optical Pulse Shape Design/Performance
It is important to use actual measured waveforms or accu-

rately modeled waveforms as input to the pulse-shaping model
whenever possible to compensate for imperfections intro-
duced by these waveforms that cannot be corrected by other
means. The temporally shaped voltage waveform [V2 in
Eq. (1)] that must be produced by the ACSL and applied to the
pulse-shaping channel of the modulator is calculated from
Eq. (1). In Eq. (1), Iout is the desired temporally shaped optical
pulse from the modulator, and the gate channel transmission
function is modeled after data similar to that shown in
Fig. 78.42. With these substitutions in Eq. (1), the required
voltage waveform V2 is determined, and an ACSL can be
designed and fabricated to produce this voltage waveform.

The numerical solution described in the previous section
allows one to calculate the electrical waveforms from all four
ports of an ACSL given the reflection coefficient k(x) and
coupling coefficient C(x) along the line. Experiments show
that for any aperture width along the line, these coefficients are
equal at each point along the line. To obtain a first approxima-
tion to these coefficients a modified version of the layer-
peeling technique5 is used. In the modified layer-peeling

technique, the effective reflection coefficient at each point
along the line is calculated given the desired output electrical
waveform from port 4 and given an ideal input square electrical
pulse (i.e., square pulse with an infinite bandwidth) applied to
port 1 of the ACSL. (The layer-peeling technique, unfortu-
nately, has difficulties when using an actual measured electri-
cal waveform as input to the line.) Using this first approximation
for the reflection and coupling coefficients and using the
measured electrical square pulse from the square-pulse gen-
erator (Model 4500E from Picosecond Pulsed Laboratories)
as input to port 1 of the ACSL, the shaped voltage waveform
exiting port 4 of the ACSL is calculated as described in the
previous section. This calculated electrical waveform from
port 4 of the ACSL is then compared to the required electrical
waveform V2 from this port; this comparison is then used to
derive a second approximation to the coupling coefficients.
This iteration process can be continued until the calculated
output waveform from port 4 of the ACSL is identical to the
required output waveform to any degree of accuracy (in prac-
tice, one iteration gives sufficient accuracy). Once the cou-
pling coefficient C is determined in this way, the aperture width
along the line is obtained from the relationship of the aperture
width to the coupling coefficient shown in Fig. 78.45.2
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Figure 78.45
The electrical coupling coefficient, defined as the ratio of the output voltage
at port 4 to the input voltage applied to port 1 shown in Fig. 78.43, plotted as
a function of aperture width for an ACSL with the geometry discussed in
the text.

Figure 78.46 shows the design of a specific pulse shape for
the OMEGA laser. In Fig. 78.46(a), the design voltage wave-
form V2 is compared to the measured voltage waveform from
port 4 of the fabricated ACSL. In Fig. 78.46(b), the design
optical waveform required from the modulator is compared
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Figure 78.46
The waveforms produced by an ACSL pulse-shaping system: (a) the mea-
sured electrical waveform from an ACSL compared to the design waveform;
(b) the measured optical waveform from a modulator compared to the design
optical waveform; and (c) the calculated output-UV-pulse shape from
OMEGA using the measured optical pulse from (b) as input and compared to
the design optical pulse shape from OMEGA.

to the measured optical waveform from the modulator. Fig-
ure 78.46(c) shows the predicted on-target OMEGA UV pulse
shape calculated from the measured optical pulse shape from
the modulator [Fig. 78.46(b)] and compared to the desired on-
target OMEGA UV pulse shape.

Summary
In conclusion, an ACSL pulse-shaping system will be

implemented on OMEGA. A model has been developed that
allows one to produce accurately shaped optical pulses suit-
able for injection into the OMEGA laser system. The ACSL
electrical-waveform generator is modeled with a numerical
solution of the telegraph equations using the method of char-
acteristics. The model uses as input the measured electrical
square pulse from the pulse generator used in the pulse-shaping
system. The model also compensates for the pulse-shape
distortion due to bandwidth limitations of the modulator intro-
duced primarily by the gate pulse. The ACSL pulse-shaping

system is a significant improvement over the existing pulse-
shaping system currently on OMEGA because of its simplicity,
enhanced performance and diagnostics, and improved model-
ing capabilities.
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Appendix A: Derivation of the Reduced Wave Equation

In this appendix we derive the reduced wave equation that
results by substituting a plane wave with slowly varying ampli-
tude into the wave equation. For simplicity, we assume that the
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wave is linearly polarized and propagating in the x direction in
a nondispersive medium. The plane wave can be represented
by

E x t A x t i t kx± ±( ) = ( ) ( )[ ] +, , exp ,ω m cc (A1)

where A± is the complex amplitude of the wave, the upper sign
representing a wave propagating to the right and the lower sign
representing a wave propagating to the left; ω = 2πν is the
angular frequency of the wave with frequency ν; k = 2π/λ is the
propagation constant of the wave with wavelength λ; and cc
implies complex conjugate. The purpose of representing the
waves in this form is to factor out the slow variations (the
temporal profile of the electrical waveform) from the rapid
oscillations (referenced to some microwave carrier frequency
ω/2π). The one-dimensional wave equation is given by
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where c = ω/k is the velocity of the wave. If we substitute A1
into A2, after some manipulation we get
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where we have used c = ω/k to eliminate terms. We now use the
fact that the amplitude is slowly varying, that is
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Equation (A4a) implies that the amplitude of the wave does
not change significantly over a distance of one wavelength λ,
and Eq. (A4b) implies that the amplitude of the wave does not
change significantly over a time duration of 1/ν. With these
slowly varying amplitude approximations, Eq. (A3) reduces to
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This equation is the reduced wave equation referred to in
the text.
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