The Design of Optical Pulse Shapeswith an Aperture-
Coupled-Stripline Pulse-Shaping System

L aser-fusion experimentsrequire precisecontrol of thetempo-
ral profileof optical pulsesappliedtotargets. Anoptical pulse—
shaping system has been in operation on OMEGA for several
years.1 During thistimethe demandson the precision, flexibil -
ity, and repeatability of the optical pulse—shaping system have
steadily increased. To meet these new demands, a new pulse-
shaping system based on an aperture-coupled stripline(ACSL)
electrical-waveform generator has been developed and dis-
cussed previously.? This new system will be implemented on
OMEGA in the next few months. In addition to its simplicity,
the new system will include significant improvements to the
modeling, performance, and diagnostics of the pulse-shaping
system to meet the challenging demands required of the sys-
tem. The shaped optical pulses produced by this system be-
come the seed pulses that are injected into the OMEGA laser
system. Details of the on-target pul se shape from the OMEGA
laser arecritically related to the detail sof the seed-pul se shape.
Thisarticle describesthe modeling of an ACSL pul se-shaping
system that is used to produce an optical seed pulse with a
specified temporal shape.

An ACSL generates temporally shaped electrical wave-
forms that are applied to electro-optic modulators to produce
shaped optical pulses. The electro-optic modulators exhibit a
finite response time to an applied voltage. Thisresponse time
has been measured and is included in the calculation of the
voltage waveform required from the ACSL to produce a
specific optical pulse shape. An ACSL is modeled as two
coupled and interacting striplines. Striplines are modeled as
transmission lines that obey a set of equations known as the
tel egraph equations.3 A new approach to solving thetelegraph
equations using the method of characteristicsis presented here
along with a straightforward extension of this approach to
ACSL'’s. The modeling presented here leads to a prescription
for determining the necessary ACSL geometry to produce a
desired on-target pulse shape on OMEGA.

The Optical Modulator Voltage Waveforms

Given the temporal profile of the optical pulse required on
target from the OMEGA laser, the temporal profile of the
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optical seed pulse that must be produced by the pul se-shaping
system is determined from the extensive modeling of the laser
systemthat hasevolved over theyears. AsshowninFig. 78.41,
this low-energy optical seed pulse is shaped by applying
shaped voltage waveforms to a dual-channel electro-optic
amplitude modulator synchronouswith thetransit through the
modulator of an optical pulsefrom asingle-longitudinal-mode
(SLM) laser.? If we neglect the finite response time of the
modulator, the intensity profile of an optical pulse exiting a
modulator is given by

lout (t) = |in(t)5in2{ n/Z[Vl(t)/V,T + @]}

xsin2{ 2|V, (1) Vi + ] @

wherel;(t) istheintensity profile of the optical pulsesentinto
the modulator from the SLM laser; the two sine-squared
factors represent the transmission functions of the two modu-
lator channels with V,(t) the voltage waveform applied to
channel 1 of themodulator, V,(t) thevoltagewaveformapplied
to channel 2 of the modulator, V,;the half-wave voltage of the
modulator (typically lessthan 10V), and @, and ¢, the offsets
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Figure 78.41

The aperture-coupled-stripline (ACSL) optical pulse-shaping system. The
output from an electrical square-pulse generator istemporally shaped by an
ACSL and used to drive an optical modulator. A separate electrical square-
pulse generator is used to gate the second channel of the modulator.
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set to zero by the application of a dc bias to each of the
modulator channels. Theinput intensity profileto the modul a-
tor is assumed to be unity for our application since the short-
duration (<5 ns) voltagewaveformsV, (t) and V,(t) areapplied
to the modulators during the peak of the 200-ns Gaussian
optical pulse from the SLM laser.

On one channel of the modulator, ashaped el ectrical wave-
form from an ACSL isapplied. The exact shape of the voltage
waveform required from the ACSL isdetermined by the shape
of the optical pulse required from the modulator and by the
response of the modul ator to an applied voltage. This channel
isreferred to as the shaping channel of the modulator. On the
other channel of the modulator, a square electrical waveform
isapplied. Thischannel isintended to produce asquare optical
waveform that acts as a gate to block unwanted pre- and post-
pulses from the modulator and enhances the contrast of the
output shaped optical pulse from the modulator. This channel
of themodul ator isreferred to asthe gate channel. The optical
pulse produced by the gate channel should ideally have afast
riseandfall timewith constant amplitudeover itsduration. The
application of asquare electrical pulse (with 45-psrisetime) to
this channel from a pulse generator (Model 10,050A from
Picosecond Pulsed Laboratories, Boulder, CO) produces the
optical pulseshapeshowninFig. 78.42. Thisfigurerevealsthe
bandwidth limitations of the modulator for this“ideal” (high-
bandwidth) square input electrical pulse. In particular, the
optical pulsefromthischannel doesnot reachitsfull amplitude
during thefirst 200to 300 psof thepul se, which, if not properly
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Figure 78.42

The measured optical pulse shape from a single channel of an electro-optic
modulator with a square electrical waveform applied to the RF port. The
square electrical waveform has arise time of 45 ps.
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compensated for, can cause pulse distortion on the beginning
of ashaped optical pulse and severe pul se distortion for short-
pulse generation. This distortion caused by the modulator
bandwidth limitation is minimized by including this effect
when calculating the voltage waveform applied to the
modulator’s shaping channel as discussed below.

Numerical Solution of the Telegraph Equations

Transmission line problems can be classified into two
categories. Thefirst category dealswith determining thetrans-
mission line properties required to produce a specific elec-
trical waveform reflected from the line, given the input
electrical waveform to the line. The second category is the
reciprocal of thefirst and dealswith determining the el ectrical
waveform reflected from a transmission line, given the input
electrical waveform to the line and the properties of the
transmission line.

Inthe present OM EGA pul se-shaping system, shaped elec-
trical waveforms are generated by the reflection from a vari-
able-impedancemicro striplineand sent to the shaping channel
of the modulator.2 The micro striplines are designed using a
layer-peeling technique that treats the micro stripline as a
simpletransmission line.? Thistechnique allows oneto calcu-
late the reflection coefficient along the line (and from that the
electrode width) needed to synthesize agiven electrical wave-
form in reflection. The reciprocal of this calculation is to
determine the electrical waveform reflected from a transmis-
sion line given the reflection coefficient along the line. This
latter calculationisdiscussed hereand, inthe next section, will
be extended to include modeling ACSL's to generate shaped
electrical waveforms.

In this section we develop the equations that describe the
electrical waveforms propagating along a transmission line
starting from thewelI-known tel egraph equationsfor theline.3
First we model a stripline or micro stripline as a transmission
line that obeys the telegraph equations:

Lt o
i ((;:( t) _ (x) avg>t<- t) (2b)

where v is the voltage along the line, i is the current flowing
alongtheline, L istheinductance per unitlength alongtheline,
and Cisthe capacitance per unit length along theline. In these
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equationsweintroducethecharacteristicimpedanceof theline
Z(x) =+/L(x)/C(x) and the wave propagation velocity
dx/dt = ¢ =1/4/LC aong theline. We assume that the propa-
gation velocity ¢ (not to be confused with the speed of light)
along the line is constant. With these substitutions Egs. (2)

become

ov(xt) _ al(x,t)
PV k(x)V(x,t)-c P (39)
al(x,t) _ _ov(xt)
o =k(x)1(x,t)-c P (3b)
where the variables are defined as
V(x,t) = v(x,t) Z7¥?%(x) (49)
and
1(x,t) =i (x,t) Z¥2(x) (4b)
and where
1 dZ(x
K= 520 d>(<) (5)

isthe reflection coefficient per unit length along the line.

If weadd and subtract Egs. (3), weget aset of reduced wave
equations

OWR(x1) | 1OWR(x.t) _ “k()WL (xt)  (69)

[5)4 c ot
and
OWL (x,t) | 1 OWL (x,t)
+= = —-k(x) WR(x,t),
SR 2 S KWR (kD). (6D
where

WR(x,t) = [V(x,t)+1(x1)]/2

= [Mx)ZV2(x) +i(x)Z¥2(] 2 (7a)

LLE Review, Volume 78

THE DEsGN oF OpTicAL PuLse SHAPES WITH AN APERTURE-COUPLED-STRIPLINE PULSE-SHAPING SYSTEM

isawavetravelingtotheright alongthelinewithvelocity cand

WL(x,t) = [V(xt)=1(x.1)]/2

= Mx)ZV2(0)-i(x)Z¥2(3)] 2 (7b)

isawavetraveling to the left along the line with velocity c. In
the appendix we show that the form of Egs. (6) isidentical to
the form of the equation obtained if one substitutes a plane
wave with slowly varying amplitude into the wave equation.
Therefore, Egs. (6) are referred to as the reduced wave equa-
tionsand arethemain resultsof thissection. Inthe next section
we show how to extend these equationsto model anACSL and
give anumerical prescription for solving the resulting equa-
tions using the method of characteristics.

Extension to an ACSL

The geometry of an ACSL is shown in Fig. 78.43. In
principle, an ACSL isadirectional coupler consisting of two
striplinesthat are coupled through an apertureintheir common
ground plane. In operation, a square electrical waveform is
launched into port 1 and propagates along electrode 1 to the
terminated port 2 of the ACSL. Asthe square electrical wave-
form propagates along electrode 1 in the coupling region, a
signal is coupled through an aperture to electrode 2 in the
backward direction and exits at port 4. The electrical wave-
form exiting port 4 is sent to the shaping channel of the
modulator and must have the proper temporal profile to pro-
duce the desired optical pulse shape out of the modulator.
By varying the width of the coupling aperture (shown in
Fig. 78.43) aong thelength of the ACSL , atemporally shaped
electrical waveform can be generated at port 4. The details of
how to calculate the width of this aperture along the line to
produce a specific electrical waveform fromthe ACSL arethe
main topic of this article.

The ACSL is modeled as two coupled transmission lines.
We can extend the formalism in the previous section to an
ACSL by writing four reduced wave equations. Two equations
describe the waves WR1(x,t) and WR2(x,t) traveling to the
right along lines 1 and 2, respectively, and two equations
describethewavesWL 1(x,t) and WL 2(x,t) traveling to the l eft
along lines 1 and 2, respectively. In each reduced wave equa-
tion weinclude the reflection coefficient k(x) along theline as
above, and we introduce a coupling term C(X) that allows for
couplingwavesfrom onelinetotheother through the aperture.
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The resulting equations are given by

OWRL(x,t) , 1 0WRI(x 1)

0x c ot

—k(x) WL1(x,t) = C(x) WL2(x,t),

dWLL(xt) 1dWLL(x,1)

0x c ot

= —k(x) WRL(x,t) - C(x) WR2(x,t),

dWR2(x,t) 21 dWR2(x,t)

1) c ot

—k(x) WL2(x,t) - C(x) WL1(x,t),

OWL2(x,t) _1WL2(x,)

oX c ot

—k(x) WR2(x,t) — C(x) WRL(x,t).

(83)

The coupling coefficient C(x) isthe coupling from onelineto
the other in the backward direction. In general, another cou-
pling term should be added to the above equations to model
coupling from one line to the other in the forward direction.
This forward coupling term can be trivially added to this
(8b) model; however, for directional couplers of thissort, coupling

in the forward direction is negligible.

The reduced wave equations (8) for an ACSL [as well as
Egs. (6) for striplines] can be solved by transforming them

along the characteristic curves
(8c)
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Figure 78.43

Exploded view of apractical four-layer, four-port ACSL. A squareelectrical waveformislaunchedinto port 1 and propagatesal ong el ectrode 1 to theterminated
port 2. An electrical signal is coupled through an aperture to electrode 2 in the backward direction, and a shaped electrical waveform exits at port 4.
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For this transformation we use the chain rules

0_008, 00 0o, 00 (109
ox 9F ox on ox H a¢ anH
and
0_008,00n_.00, 00 (100
ot 9 ot an ot CHTfanH
to obtain
dWR
dnl('?) = -[k()WL1(&) + C(x)WL2(8)] /2. (11a)
dw(;l(‘f =[k(x) WRL(7) + C(x) WR2(1)] /2, ~ (11b)
dWR2
el ) - [powiz(e) + coowia(e)] /2, (1o
dW:_:(E) = [K()WR2(n) + C()WR1{n)] /2, (11d)

wherewehave used thefact that WR1,2 arewavespropagating
inthepositivexdirection and WL 1,2 arewaves propagating in
the negative x direction and obey wave equations with solu-
tions of the form

WR1,2(x,t) = WRL 2(ct +X) =WRL,2(n)  (12a)

and

WL12(x,t) = WLL 2(ct —x) = WLL2(§).  (12b)
With this transformation the derivatives in Egs. (11) become
total derivatives.

The coordinate transformation expressed by Egs. (9) lends
itself to a simple geometric interpretation that leads to a
numerical solution algorithm for the reduced-wave Egs. (11).
The transformation Egs. (9) with dx = cdt can be seento be a
rotation of the x,ct coordinate system by 45° into the é,n
coordinate system as shown in Fig. 78.44. In the new &,n
coordinate system, Egs. (11) describe how the right-going
wavesWR1,2 evolvein the n direction and how theleft-going
waves WL 1,2 evolve in the & direction. The differential ele-
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ment in this new system is seen to be

dn=a—’7dx+a—ndt=dx+cdt=2dx, (13)
0x ot

where we have used dx = cdt. To solve Egs. (11) numerically,
we define amatrix as shown in Fig. 78.44 for each of the four

waves and write the finite difference equations

WRL(i,j) = WRL(i -1,j -1)

~[k(iyweLali +1,j 1) +cliywL2(i +1,j -1 dx, (143)
WLL(]) = WLL(i +1,] -1

~[k(iywRa(i -1,j -1) + C(i)) WR2(i +1,j ~1)]dx, (14b)
WR2(i, j) = WR2(i -1,j -1)

~[k(iyweL2(i +1.j -1) + C(i)wLi(i +1,j 1] dx, (14c)

ct Wave array

Figure 78.44

An array used by the numerical solution technique to represent a wave
propagating along atransmission line. The value at each location in thearray
givesthe amplitude of the wave at some fixed position along theline at some
time. Four such arrays are used in the calculation to represent the four waves
propagating in an ACSL.
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WL2(i,j) =wL2(i +1,j -1)
~[k(i)WR2(i =1,j -1) + C(i)) WR1(i +1,j ~1)] dx, (L4d)

wheretheindex i representsthepositionxalongthelineandthe
index j represents the timet. In these equations, for example,
the value of the matrix element at the location i,j in the WR1
array isthe amplitude of thewave WRL1 at position x along the
lineat timet. Equations (14) givethe values of the four waves
at sometime, given values of the waves at an earlier time and
the reflection and coupling coefficients (k and C) along the
line. Therefore, given the coupling coefficients and theinitial
values of the waves along the line (at j = O for all i) and the
values of the waves at the boundaries for all time (at the first
and last i valuefor all j), Egs. (14) can beused to find all other
values in the arrays. Knowing all values in the four arrays
determines the amplitudes of the four waves at all locations
along thelinefor al time. In particular, we specify the right-
going wave on line 1 (the pulse from the pulse generator
appliedto port 1), and we cal culate the left-going waveon line
2 (the pulse at port 4 that is applied to the modulator shaping
channel). In the next section we show how to apply this
techniqueto the design of optical pulse shapesfromthe ACSL
pul se-shaping system.

Optical Pulse Shape Design/Performance

It isimportant to use actual measured waveforms or accu-
rately model ed waveforms asinput to the pul se-shaping model
whenever possible to compensate for imperfections intro-
duced by these waveforms that cannot be corrected by other
means. The temporally shaped voltage waveform [V in
Eq. (1)] that must be produced by the ACSL and applied to the
pulse-shaping channel of the modulator is calculated from
Eq. (1). InEQ. (1), I 5t isthedesired temporally shaped optical
pulse from the modulator, and the gate channel transmission
function is modeled after data similar to that shown in
Fig. 78.42. With these substitutions in Eg. (1), the required
voltage waveform V, is determined, and an ACSL can be
designed and fabricated to produce this voltage waveform.

The numerical solution described in the previous section
allows oneto calcul ate the el ectrical waveformsfrom all four
ports of an ACSL given the reflection coefficient k(x) and
coupling coefficient C(x) along the line. Experiments show
that for any aperturewidth alongtheline, these coefficientsare
equal at each point along theline. To obtain afirst approxima-
tion to these coefficients a modified version of the layer-
peeling technique® is used. In the modified layer-peeling
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technique, the effective reflection coefficient at each point
along the lineis calculated given the desired output electrical
waveformfromport 4 and givenanideal input squareel ectrical
pulse (i.e., square pul se with an infinite bandwidth) applied to
port 1 of the ACSL. (The layer-peeling technique, unfortu-
nately, has difficulties when using an actual measured electri-
cal waveformasinputtotheline.) Usingthisfirst approximation
for the reflection and coupling coefficients and using the
measured electrical square pulse from the square-pulse gen-
erator (Model 4500E from Picosecond Pulsed Laboratories)
asinput to port 1 of the ACSL, the shaped voltage waveform
exiting port 4 of the ACSL is calculated as described in the
previous section. This calculated electrical waveform from
port 4 of the ACSL isthen compared to the required electrical
waveform Vs, from this port; this comparison is then used to
derive a second approximation to the coupling coefficients.
This iteration process can be continued until the calculated
output waveform from port 4 of the ACSL isidentical to the
reguired output waveform to any degree of accuracy (in prac-
tice, one iteration gives sufficient accuracy). Once the cou-
pling coefficient Cisdeterminedinthisway, theaperturewidth
along thelineis obtained from the relationship of the aperture
width to the coupling coefficient shown in Fig. 78.45.2
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Figure 78.45

Theelectrical coupling coefficient, defined asthe ratio of the output voltage
at port 4 to theinput voltage applied to port 1 shownin Fig. 78.43, plotted as
a function of aperture width for an ACSL with the geometry discussed in
the text.

Figure 78.46 showsthe design of a specific pulse shapefor
the OMEGA laser. In Fig. 78.46(a), the design voltage wave-
form V, is compared to the measured voltage waveform from
port 4 of the fabricated ACSL. In Fig. 78.46(b), the design
optical waveform required from the modulator is compared
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to the measured optical waveform from the modulator. Fig-
ure 78.46(c) showsthe predicted on-target OMEGA UV pulse
shape cal culated from the measured optical pulse shape from
the modul ator [Fig. 78.46(b)] and compared to the desired on-
target OMEGA UV pulse shape.

Summary

In conclusion, an ACSL pulse-shaping system will be
implemented on OMEGA. A model has been developed that
allows one to produce accurately shaped optical pulses suit-
able for injection into the OMEGA laser system. The ACSL
electrical-waveform generator is modeled with a numerical
solution of the telegraph equations using the method of char-
acteristics. The model uses as input the measured electrical
squarepulsefromthe pul segenerator usedinthe pul se-shaping
system. The model also compensates for the pulse-shape
distortion dueto bandwidth limitations of themodulator intro-
duced primarily by the gate pulse. The ACSL pulse-shaping
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system is a significant improvement over the existing pulse-
shaping system currently on OM EGA becauseof itssimplicity,
enhanced performance and diagnostics, and improved model -
ing capabilities.
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Appendix A: Derivation of the Reduced Wave Equation

In this appendix we derive the reduced wave equation that
resultsby substituting aplanewavewith slowly varyingampli-
tudeinto thewave equation. For simplicity, we assumethat the
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Figure 78.46

The waveforms produced by an ACSL pulse-shaping system: (a) the mea-
sured electrical waveform from an ACSL compared to the design waveform;
(b) the measured optical waveform from amodulator compared to the design
optical waveform; and (c) the calculated output-UV-pulse shape from
OMEGA using the measured optical pulsefrom (b) asinput and compared to
the design optical pulse shape from OMEGA.
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waveislinearly polarized and propagating inthex directionin
a nondispersive medium. The plane wave can be represented

by

E. (xt) = A (xt) expli(ct F kx)] +cc, (A1)
where A, isthe complex amplitude of thewave, the upper sign
representing awave propagating to theright and thelower sign
representing a wave propagating to the left; w = 2ntvis the
angular frequency of thewavewithfrequency v; k=277 A isthe
propagation constant of the wave with wavelength A; and cc
implies complex conjugate. The purpose of representing the
waves in this form is to factor out the slow variations (the
temporal profile of the electrical waveform) from the rapid
oscillations (referenced to some microwave carrier frequency
w/27). The one-dimensional wave equation is given by

0%E.(x.t) _ 1 9%E.(x.t)
ox2 c2  at?

=0, (A2)

where ¢ = wik isthe velacity of the wave. If we substitute A1
into A2, after some manipulation we get

2 2
0P ok - L0 A 5 @0

1
ax2 ax c2 ot2 c2 ot

(A3)

wherewe haveused ¢ = wk to eliminateterms. We now usethe
fact that the amplitude is lowly varying, that is

on,
0X

<<[kA| (Ada)
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and
0A,

] (Adb)

Equation (A4a) implies that the amplitude of the wave does
not change significantly over adistance of one wavelength A,
and Eq. (A4b) impliesthat the amplitude of the wave does not
change significantly over a time duration of 1/v. With these
slowly varying amplitude approximations, Eq. (A3) reducesto

oA (x) _10A.(x1) _
x ¢ ot -0 (A9

This equation is the reduced wave equation referred to in
the text.
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