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The near-field intensity modulation due to a diamond-turned
KDP wedge is investigated through computer simulations
within the framework of its application to LLE’s OMEGA laser
system. KDP wedges will be installed on each OMEGA
beamline and mounted 12 m away from the final focusing
optics. The wedges will improve the direct-drive inertial con-
finement fusion uniformity by a process known as polarization
smoothing. Diamond turning is the finishing process of choice
due to the greater cost incurred by installing polished KDP
crystals on every beamline.

The Nova laser facility at the Lawrence Livermore National
Laboratory (LLNL) reported blast-shield damage that was
linked to the mid-range spatial wavelengths (1 to 4 mm) of
scratch marks on diamond-turned KDP crystals in use at the
time. This motivated LLE to employ polished KDP crystals for
frequency tripling on OMEGA during its 24- to 60-beam
upgrade (completed in 1995) because polishing produces a
smoother distribution of spatial wavelengths of lower ampli-
tude. While diamond-turning technology has improved re-
cently, residual concern has existed regarding the potential
damaging effects of installing diamond-turned KDP crystals.
This has prompted an investigation, both theoretical and ex-
perimental, into the potential effects of the scratch or milling
marks left behind by diamond turning.

This article represents part of the theoretical investigation
of this problem. In particular, the simulations model the non-
linear effects that result from (1) the beam propagation through
the 12 m of air that separates the KDP wedge from the final
focusing optics, (2) the initial phase perturbation of the beam
due to the residual scratch marks on the diamond-turned KDP
surface, and (3) the nonlinear index’s polarization dependence.
The danger here is that small-scale self-focusing might de-
velop high-intensity spikes leading to filamentation damage in
the final focusing optics. The simulations reported here dem-
onstrate that KDP wedges, diamond-turned or smooth, are not
a significant source of intensity modulation under OMEGA
laser conditions. In addition, for a beam with a varying polar-
ization state, these simulations exhibit an intensity enhance-
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ment in the vicinity of linear polarization due to the nonlinear
effect of cross-phase modulation.

Diamond-Turned KDP Wedge
1. Polarization Smoothing

The concept of polarization smoothing originated from
Kato1 who recognized the uniformity that would result from
rotating the polarization through 90° on half of the individual
phase-plate elements chosen at random. A more practical
device, first described in Ref. 2, is a wedge of birefringent
material such as KDP. A linearly polarized beam incident
upon the KDP wedge is split into two orthogonally polarized
beams of equal intensity when the incident beam’s polarization
vector is oriented at 45° with respect to the slow and fast axes
of the crystal (see Fig. 76.27). The resultant two orthogonal
beams co-propagate at a slight angle of separation with respect
to each other, determined by the wedge angle and the refractive
indexes for the slow and fast waves. The current requirements
for OMEGA set the wedge angle to 4.5 min. This causes a
separation angle of 44 µrad between the two orthogonal
beams and a relative offset of 80 µm after focusing on target.
The relative offset of 80 µm achieves an instantaneous theoreti-
cal 1 2  reduction of the nonuniformity through spatial
averaging, which complements the uniformity achieved by
SSD alone.3

As a consequence of the separation angle, the combined
polarization state of the two orthogonally polarized beams
continuously cycles through all elliptical states along any
transverse plane. The rate of change is determined by the trans-
verse components of the wave vectors. Since the separation
angle is small, the wavelength of the cycle is given by
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where λ = 351 nm is the UV operating wavelength of OMEGA.
The resultant λpol = 8 mm is the transverse distance required to
cycle the polarization state from right-handed circular, to
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linear, to left-handed circular, back to linear, and returning to
right-handed circular.

2. Induced Phase Perturbations
Two types of phase perturbation result from the introduc-

tion of a diamond-turned KDP wedge. The first is due to the
residual scratch marks left behind by the diamond-turning
process. The scratch marks cause a beam to acquire a pseudo-
random phase perturbation as the beam passes through the
front and back faces of the crystal. The pseudorandom phase
perturbation can be described by a thin-optic transformation

Φmill KDP= −( ) ( )k n S y0 1 , (2)

where S(y) is the depth of the scratch mark as a function of the
transverse position y, k0 2≡ π λ  is the vacuum wave number,
and nKDP represents the refractive index for either the slow or
fast wave.

The second type of phase perturbation arises during propa-
gation because the nonlinear refractive index is a function of
polarization state and intensity (see subsection 1 of the Ellip-
ticity  section) together with the fact that the KDP wedge
produces a beam whose combined polarization state varies as
a function of transverse position y. The nonlinear refractive
index is a maximum for linear polarization and a minimum for
circular polarization. Therefore, both orthogonally polarized
beams accumulate a periodic phase perturbation during propa-
gation that is greatest in the vicinity of linear polarization.

Both types of phase perturbation affect the beams by intro-
ducing spatial phase modulation that can then be converted into
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Figure 76.27
A birefringent KDP wedge achieves polar-
ization smoothing and a theoretical 1 2
reduction in nonuniformity.

intensity modulation by virtue of the diffractive process that
occurs during propagation. Intense beams can develop high-
intensity spikes leading to filamentation damage through the
coupled process of phase modulation and diffraction.

3. Model of Scratch Marks
The pseudorandom behavior of the residual scratch marks

is modeled in this article by bandpass filtering a white noise
source, viz.
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where F represents the spatial Fourier transform, Ξ(y) is the
noise source, ky0

 is the central spatial wave number, and kymax

and kymin
 represent the maximum and minimum passed spatial

wave numbers. This result is sometimes referred to as “col-
ored” noise.4 Figure 76.28 illustrates an example in which the
passband was set to 2 4 2 2π πmm mm( ) ≤ ≤ ( )ky . These
data are used in the subsequent illustrative numerical simula-
tions given in the Numerical Results section. This passband
was selected since it covers the troublesome spatial frequen-
cies identified by LLNL. Also, these data closely resemble
surface profile measurements on a qualitative basis. An alter-
native function that completely describes the power spectral
density of the scratch marks could be used in place of the
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rect(ky) function. However, an adequate statistical description
of the diamond-turned scratch marks is unavailable at this time.
The rect(ky) can be viewed as a worse-case situation that
emphasizes the higher spatial frequencies since the actual
power spectral density would go to zero in a continuous
manner as the spatial frequency increases.

Nonlinear Wave Equation
The analysis of beam propagation for this problem assumes

that the optical field is monochromatic and the bandwidth of
the spatial spectrum is small relative to the vacuum wave
number k c0 0= ω , where ω0 is the angular frequency and c is
the vacuum speed of light. This permits the slowly varying
amplitude to be separated from the rapidly varying part, such
that the electric field vector is given by

E py z t E y z e c ci t k n z, , ˆ , . . ,( ) = ( ) +[ ]− −( )1

2
0 0 0ω (4)

where E(y,z) is the slowly varying complex amplitude as a
function of both the transverse distance y and propagation
distance z, p̂ is the polarization vector, n0 is the refractive
index, and c.c. indicates the complex conjugate. An arbitrary
elliptical polarization state decomposes naturally into a
weighted vector sum of right-handed and left-handed circular
polarization states, viz.
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A bandpass-filtered pseudorandom noise source where
the passband is set to 2 4 2 2π πmm mm( ) ≤ ≤ ( )ky

and the peak-to-valley scratch depth is 40 nm.
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where ERH(y,z) and ELH(y,z) are the complex amplitudes of
the right-handed and left-handed circular polarization states,
which are defined in terms of Cartesian components as
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and the polarization vectors are defined as
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The optical field is assumed to propagate in a lossless,
isotropic nonlinear Kerr-like medium, where the nonlinear
refractive index is given by

n n n= +0 ∆ . (8)

The quantity ∆n represents the change in the refractive index
beyond the low-intensity value n0 and exhibits a linear depen-
dence on the optical field intensity. The scalar nonlinear wave
equation for each vector component is then given by
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and it has been assumed that ∂ ( ) ∂ =2 2 0E y z z, , i.e., the
slowly varying envelope approximation. The first terms in
Eqs. (11) and (12) represent self-phase modulation, and the
second group of terms represents cross-phase modulation. The
vector components are coupled through the cross-phase modu-
lation terms. Due to the symmetry of centrosymmetric Kerr-
like media and the fact that both vector components share the
same frequency ω0, there are only two independent third-
order susceptibility constants χ xyxy

3( )  and χ xxyy
3( )  that obey the

relation χ χ χxxxx xyxy xxyy
3 3 32( ) ( ) ( )= +  and follow the frequency con-

vention χ ω ω ω ωxyxy
3( ) − −( ), , , . (Notice that it is this convention

that causes the subtle notational deviation from that of
Sutherland.5) Either scalar nonlinear wave equation, Eq. (9)
or Eq. (10), can be written in operator form as6

∂ ( )
∂

= +( ) ( )E y z

z
D N E y z

, ˆ ˆ , , (13)

where the operator ̂D accounts for diffraction and is defined as

ˆ ,D
i

k T≡ ∇
2

2 (14)

the operator ̂N   governs media nonlinearities and is defined as

ˆ ,N ik n≡ 0∆ (15)

the quantity E(y,z) represents either the right-handed or left-
handed complex amplitude, and ∆n represents either Eq. (11)
or Eq. (12). The formally exact solution of Eq. (13) is given by

E y z z e E y zi D N z, , .
ˆ ˆ+( ) = ( )+( )∆ ∆

An important merit of decomposing an arbitrary elliptical
polarization state into right-handed and left-handed circular
polarization states is that
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This implies that the intensities of the vector components and
therefore the quantity ∆n are all constants of motion. This is not
true for a Cartesian decomposition, due to the well-known
cross-phase modulation effect of ellipse rotation, which causes
the magnitudes along the Cartesian components to change with
propagation distance.7

1. Ellipticity and the Nonlinear Refractive Index
The ellipticity parameter η covers the range − ≤ ≤π η π4 4 ,

where tan(η) describes the ratio of the minor and major axes of
the polarization ellipse with the sign defining its handedness
[positive (+) indicates right-handed and negative (−) indicates
left-handed].7 When η = 0, the polarization state is linear and,
when η π= 4 , the polarization state is circular. Equations to
calculate the lengths of the major and minor axes can be found
in Oughstun8 (see Ref. 8, Sec. 4.2.1) and are governed by the
complex amplitudes ERH(y,z) and ELH(y,z). Consequently, the
ellipticity parameter η is also a function of the complex
amplitudes ERH(y,z) and ELH(y,z). The quantities ∆nRH and
∆nLH depend on the magnitudes E y zRH ,( )  and E y zLH ,( )
and are indirectly functions of the polarization state.
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The extrema of the quantities ∆nRH and ∆nLH occur when
the polarization state is either linear or circular. If the polar-
ization state is linear, then E E Elin LH RH

2 2 22 2= =  (where
the factor of 2 comes from the equal intensity split into both
polarization states), and the change in the nonlinear refractive
index becomes

∆n
n

Exxyy xyxylin lin= +[ ]( ) ( )3

8
2

0

3 3 2χ χ . (16)

If the polarization state is circular, either right-handed or left-
handed, then

∆n
n

Exyxycir cir= ( )3

4 0

3 2χ . (17)

In either of these two degenerate states E Elin cir
2 2=  so that

∆ ∆n nlin cir> . (18)

In a more general sense, the nonlinear refractive index is larger
in the vicinity surrounding, or in the immediate neighborhood
of, the points of linear polarization relative to the minimum
values attained at the points of right-handed or left-handed
circular polarization.

2. Angular Spectrum Representation
If nonlinear effects can be neglected, the vector components

become decoupled and obey the scalar Helmholtz wave equa-
tions given by

∇ ( ) + ( ) =2
0
2 2 0E y z k n E y z, , , (19)

which has an exact solution at any exit plane z + ∆z given by the
angular spectrum representation (see Ref. 9, Sec. 3.7), viz.

E y z z E k z e e dky
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where ˜ ,E k zy( ) is the spatial Fourier transform at the entrance
plane z and is defined by

˜ , , .E k z E y z e dyy
ik yy( ) = ( ) −

−∞

∞

∫ (21)

3. Self- and Cross-Phase Modulation
If diffraction can be neglected, the scalar nonlinear wave

equation for either vector component has the simple form

∂ ( )
∂

= ( )E y z

z
NE y z

, ˆ , , (22)

which has a solution given by

E y z z E y z eik n z, , ,+( ) = ( )∆ ∆ ∆0 (23)

because the quantity ∆n is not a function of the propagation
distance for a circular-polarization decomposition. As a result,
the nonlinear effects of self- and cross-phase modulation,
acting alone, induce a simple phase accumulation that is a
function of both the polarization state and intensity. This is a
generalization of the well-known B-integral.

Numerical Approach
The numerical split-step Fourier method (see Ref. 6,

Sec. 2.4.1) is used to solve the differential Eq. (13), where the
total required distance of propagation is divided into small
steps over which the linear effects of diffraction are treated
separately from the nonlinear effects of self- and cross-phase
modulation. This permits the solutions given by Eqs. (20) and
(23) to be used if the chosen step size is sufficiently small that
the linear and nonlinear effects are approximately independent
over that step.

The numerical calculation over one small step ∆z is
referred to as a propagation step. One propagation step entails
the independent calculation of diffraction using the results of
Eq. (20) and the independent calculation of the nonlinear
phase accumulation as described by Eq. (23). The detailed
manner in which this is carried out greatly affects the overall
error achieved and directly affects the required number of steps
needed to obtain a suitable level of accuracy. For example, if a
full diffraction step is followed by a full nonlinear step, the
error is O z∆ 2{ } , which is equivalent to solving Eq. (13) as

E y z z e e E y zi zD i zN, , .
ˆ ˆ+( ) ≅ ( )∆ ∆ ∆ (24)

However, if a half diffraction step is followed by a full nonlin-
ear step and then by another half diffraction step, the error is
O z∆ 3{ }, which is equivalent to solving Eq. (13) as

E y z z e e e E y z
i

z
D

i zN
i

z
D

, , .
ˆ

ˆ
ˆ

+( ) ≅ ( )∆
∆

∆
∆

2 2 (25)

The errors associated with Eqs. (24) and (25) are found by
comparing these approximate solutions to the formally exact
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solution to Eq. (13) and applying the Baker–Hausdorff for-
mula for two noncommuting operators.6 The method de-
scribed by Eq. (25), known as the symmetrized split-step
Fourier method, is employed for the numerical simulations in
the subsequent section. Figure 76.29 graphically represents
this particular approach over two small steps of ∆z.

Numerical Results
The intent of this investigation is to isolate the effects

caused by the nonlinear propagation in air, the scratch marks,
and the wedged shape of the KDP crystal, while ignoring the
nonlinear index of KDP. To this end, only the exit face of the
KDP crystal is considered to be scratched, and the initial
beam shape is regarded as infinitely smooth. As a conse-
quence, the nonlinear ripple growth within the KDP crystal
can be neglected.

The beam shape is modeled by using spatially offset hyper-
bolic-tangent step functions, viz.

E y y y( ) = +( )[ ] − −( )[ ]{ }1

2
100 0 14 100 0 14tanh . tanh . , (26)

which yields an infinitely smooth, 28-cm-diam beam. The
nominal intensity level for OMEGA equal to 1.3 GW/cm2 is
used. Also, an unrealistic value of 10.3 GW/cm2 is used to
demonstrate a regime where the nonlinear effects dominate
since, as it will be shown, the nonlinear effects are small for the
nominal OMEGA intensity level. The measure of intensity
modulation used in this paper is the contrast defined as
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Two propagation steps of the symmetrized split-step Fourier method covering a distance of 2∆z.

Contrast
mean

=
( ){ }
( ){ }

max
,

I y

I y
(27)

where the transverse position y, for this formula only, covers
the region where I(y) was initially at full value; thus, the region
where the beam intensity tapers to zero is not considered for
this statistic.

1. Material Parameters
The material parameters used in the simulations are given in

this subsection. The linear refractive indices for the KDP
crystal are n

oKDP = 1 532498.  for the ordinary wave and
n

eKDP = 1 498641.  for the extraordinary wave, which propa-
gates at 59° to the optic axis. The third-order nonlinear suscep-
tibility constants for air are

χ ω ω ω ωxyxy
3 1928 16 10( ) −− −( ) = ×, , , . esu

and

χ ω ω ω ωxxyy
3 19172 4 10( ) −− −( ) = ×, , , . esu .

The third-order susceptibility constants are four times those
given in Ref. 10, due to the particular definitions they used for
the polarization vector and intensity, as noted by Sutherland
[see Ref. 5, p. 298]. There is a compensatory factor of 1/4 in the
definition of ∆n used in this article, which effectively balances
this deviation.
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2. Enhancement of Linear Polarization
As was mentioned in subsection 1 of the Nonlinear Wave

Equation section, the phase accumulation is greatest in the
vicinity surrounding points of linear polarization. When dif-
fraction is included, these areas tend to focus and correspond
to peaks of intensity modulation. To illustrate this effect, a
simulation was carried out modeling a KDP wedge with an
optically smooth surface, i.e., without an initial pseudorandom
phase perturbation. Due to the wedge and the dependence of
the nonlinear refractive index on the polarization state, a ripple
is introduced with a wavelength 1/2 λpol (where the factor of
1/2 emphasizes that the overall phase perturbation of both
orthogonal beams has extrema at the transverse positions
corresponding to linear or circular polarization that are inde-
pendent of the handedness), which can lead to small-scale self-
focusing if the beam intensity is high enough. This is contrary
to what would be expected in the absence of a wedge; with a
perfectly smooth beam and an optically smooth KDP surface,
one would observe only a rotation of the polarization ellipse
(except in the degenerate cases when the whole beam is either
linearly or circularly polarized) and possibly whole-beam self-
focusing. This simulation was run with an input intensity of
10.3 GW/cm2 and yielded a contrast of 1.31. These results are
presented in Fig. 76.30, where a correlation between the peak
intensities and the linear polarization is evident by the location
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Figure 76.30
The simulation of propagating 12 m past an optically
smooth KDP wedge with an incident intensity level of
10.3 GW/cm2. A contrast of 1.31 is observed. Squares
and circles indicate positions of linear and circular
polarization, respectively.

of the square symbols. If the intensity were lowered to the
nominal OMEGA level, a small contrast of only 1.04 would
be calculated.

The enhancement of linear polarization may be amplified
or seeded by the presence of scratch marks on the surface of the
KDP wedge. This effect can be understood by running a
simulation that accounts only for diffraction. In this situation
there is, of course, no correlation between the intensity peaks
that develop during propagation and the polarization state.
Some intensity peaks, however, are inevitably located in the
neighborhood of linear polarization. These intensity peaks
seed the nonlinear growth by increasing the associated phase
accumulation in these regions as described by Eq. (23) and, as
a consequence, induce a greater intensity modulation than
observed for the optically smooth wedge.

A simulation for the nominal OMEGA laser intensity,
including both linear and nonlinear effects, yielded a contrast
of 1.32 and is presented in Fig. 76.31(a). In this case, only a
slight correlation exists between the intensity peaks and the
linear polarization state due to the weak nonlinear effect. When
the intensity level is increased to 10.3 GW/cm2, however, an
appreciable growth is observed in the vicinity of linear polar-
ization [as shown in Fig. 76.31(b)], and, consequently, a
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significant correlation exists between the intensity peaks and
these regions as indicated by the association of the majority of
the square symbols with the intensity peaks.

3. Contrast Calculations at the Nominal OMEGA
Intensity Level
Tables 76.I and 76.II contain contrast data calculated from

simulations of linear and nonlinear propagation, respectively,
in which the same scratch-depth data presented in Fig. 76.28
was scaled to cover the 10-nm to 50-nm range for an incident
intensity level of 1.3 GW/cm2. The scratch-depth range pre-
sented here was chosen to correspond to the range of surface
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Figure 76.31
The simulation of nonlinear propagation through 12 m of
air past a pseudorandomly scratched KDP wedge with
40-nm peak-to-valley scratch depth and a passband of
2 4 2 2π πmm mm( ) ≤ ≤ ( )ky  (a) at 1.3 GW/cm2 and
(b) at 10.3 GW/cm2. The resulting contrast is 1.32 in
(a) and 2.63 in (b). Squares and circles indicate positions
of linear and circular polarization, respectively.

profile measurements that were taken on diamond-turned
KDP crystals, which yielded peak-to-valley scratch depths of
40 nm (worst case) and 15 nm (best case). These tables also
include calculated contrast data for three additional passband
configurations: the passband is narrowed to ky = ( )2 3π mm ,
widened to 2 100 2 1π πmm mm( ) ≤ ≤ ( )ky  and widened to a
low pass of ky ≤ ( )2 1π mm .

If the scratch mark model given in Eq. (3) is extended to
include another spatial dimension, a 2-D colored noise source
is modeled. A 2-D beam is then modeled by extending Eq. (26)
to include another dimension. Both of these models are then
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used to simulate 2-D nonlinear beam propagation in an analo-
gous manner to the 1-D case. The plot presented in Fig. 76.32
shows three lineouts from a 2-D simulation (taken at the
center and near the edges of the beam) for a beam with an
intensity of 1.3 GW/cm2, a scratch-mark passband of
2 4 2 2π πmm mm( ) ≤ ≤ ( )k kx y, , and a peak-to-valley
scratch depth of 40 nm. The contrast calculated for the whole
2-D beam is 1.35, compared to the value of 1.32 given in
Table 76.II for the corresponding 1-D case.

At the nominal OMEGA intensity level of 1.3 GW/cm2, a
contrast ratio of 1.8:1 represents the damage threshold of the
final optics. The data in Table 76.II show that the calculated
contrast values are well below this threshold even for grating-
type sinusoidal scratch marks. Recent linear intensity modula-
tion measurements taken on diamond-turned KDP crystals
yielded a range of contrast values between 1.04 to 1.08, which
roughly correlates with the linear propagation simulation re-
sults for peak-to-valley scratch depths between 10 and 20 nm

and a passband of 2 100 2 1π πmm mm( ) ≤ ≤ ( )ky  given in
Table 76.I. The corresponding contrast range in Table 76.II for
nonlinear propagation is 1.07 to 1.11, which represents a small
increase due to the nonlinear effects. Near-field images were
taken during OMEGA full-power shots on a beamline with and
without a diamond-turned KDP plate at an equivalent plane of
the final focusing optics. In this experiment, a negligible
increase in the intensity modulation was observed, corroborat-
ing the results of these numerical simulations.

Conclusion
On the basis of realistic simulations, including diffraction

and nonlinear self- and cross-phase modulation, and a realistic
representation of scratch marks on diamond-turned KDP, it has
been found that KDP wedges, diamond-turned or smooth, are
not a significant source of intensity modulation. These results
are consistent with experimental results from full-power shots.
Accordingly, polarization smoothing will be implemented on
OMEGA using diamond-turned rather than polished KDP.

Table 76.I: The calculated value of contrast for linear propagation through 12 m of air past a scratched KDP wedge at an
incident intensity level of 1.3 GW/cm2 for different scratch depths and filter types.  

Peak-to-Valley

Scratch Depth (nm)

Sinusoidal

ky = 2π/(3 mm)

Random Lowpass  

ky ≤ 2π/(1 mm)

Random Bandpass  

2π/(1 mm) ≤ ky ≤ 2π/(1 mm)

Random Bandpass  

2π/(4 mm) ≤ ky ≤ 2π/(2 mm)

10 1.08 1.03 1.04 1.06

20 1.16 1.07 1.08 1.11

30 1.23 1.11 1.11 1.17

40 1.31 1.14 1.14 1.23

50 1.38 1.18 1.19 1.28

Table 76.II: The calculated value of contrast for nonlinear propagation through 12 m of air past a scratched KDP wedge at an
incident intensity level of 1.3 GW/cm2 for different scratch depths and filter types.  

Peak-to-Valley

Scratch Depth (nm)

Sinusoidal

ky = 2π/(3 mm)

Random Lowpass  

ky ≤ 2π/(1 mm)

Random Bandpass  

2π/(1 mm) ≤ ky ≤ 2π/(1 mm)

Random Bandpass  

2π/(4 mm) ≤ ky ≤ 2π/(2 mm)

10 1.13 1.07 1.07 1.11

20 1.23 1.09 1.11 1.18

30 1.32 1.13 1.16 1.25

40 1.41 1.17 1.19 1.32

50 1.50 1.20 1.25 1.38
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Figure 76.32
Three lineouts from a 2-D simulation (taken at the center
and near the edges of the beam) of nonlinear beam
propagation with a 1.3 GW/cm2 intensity, through 12 m
of air, past a pseudorandomly scratched KDP wedge with
40-nm peak-to-valley scratch depth and a passband of
2 4 2 2π πmm mm( ) ≤ ≤ ( )k kx y, . An overall contrast
of 1.35 is observed.
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