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Stimulated Brillouin scattering (SBS) in a plasma is the decay
of an incident (pump) light wave into a frequency-downshifted
(Stokes) light wave and an ion-acoustic (sound) wave.1 It is
important in direct2 and indirect3 inertial confinement fusion
(ICF) experiments because it scatters the laser beams away
from the target, thereby reducing the energy available to drive
the compressive heating of the nuclear fuel.

The SBS of an isolated beam has been studied in detail.
Backward SBS was studied in numerous early papers, and
near-forward, sideward, and near-backward SBS were studied
in some recent papers.4–8 Because beams overlap in the coro-
nal plasma surrounding the nuclear fuel, it is also important
to analyze SBS (and other parametric instabilities) driven by
two (or more) crossed beams. For some scattering angles the
SBS geometries allow the pump waves to share daughter
waves.9–11 Because the growth of these daughter waves is
driven by two pump waves (rather than one), the growth rates
associated with these scattering angles are higher than the
growth rates associated with other scattering angles. Such is
the case for forward and backward SBS, in which the Stokes
wave vectors bisect the angle between the pump wave vectors.

The outline of this article is as follows: (1) We derive the
equations governing forward and backward SBS. (2) We solve
the linearized equations governing the transient phase of the
instability. These equations differ from the linearized equa-
tions governing the SBS of an isolated beam7 because the
forward and backward SBS of crossed beams each involve one
Stokes wave and two sound waves (rather than one). (3) We
solve the nonlinear equations governing the steady state of the
instability. These equations describe the nonlinear competition
between forward and backward SBS. (4) We discuss the entire
evolution of forward and backward SBS. Finally, (5) we
summarize the main results of the article.

In the Appendix we show that, in steady state, the equations
governing the simultaneous near-forward and near-backward
SBS of an isolated beam are equivalent to the equations

Forward and Backward Stimulated Brillouin Scattering
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governing the simultaneous forward and backward SBS of
crossed beams; thus, many results of this article also apply to
the SBS of an isolated beam.

Governing Equations
The SBS of crossed beams is governed by the Maxwell

wave equation1

∂ + − ∇( ) = −tt e h e l hc A n A2 2 2 2 2ω ω (1)

for the electromagnetic potential, together with the sound-
wave equation1

∂ + − ∇( ) = ∇tt s l s hc n c A2 2 2 2 2 21

2
. (2)

The electromagnetic potential   A c m mh h s e i= ( )( )v 1 2
 is the

quiver speed of electrons in the high-frequency electric field
divided by a characteristic speed that is of the order of the
electron thermal speed; nl is the low-frequency electron
density fluctuation associated with the sound wave divided
by the background electron density; and the  signify that
only the low-frequency response to the ponderomotive force
was retained.

The geometry associated with forward SBS is shown in
Fig. 75.31(a). The forward SBS of beam 1 is subject to
matching conditions of the form

ω ω ω1 1 1 1= + = +f s f s, ,k k k (3)

where (ω1,k1) and (ωf, kf) satisfy the light-wave dispersion
equation ω ω2 2 2 2= +e c k , and (ωs1, ks1) satisfies the sound-
wave dispersion equation ω 2 2 2= c ks . Similar matching condi-
tions apply to the forward SBS of beam 2. Because the sound
frequencies depend on the magnitudes of the sound-wave
vectors, but not on their directions, ωs2 = ωs1 = ωs.
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By substituting the Ansätze

A A i i t A i i t

A i i t c c

h

f f f

= ⋅ −( ) + ⋅ −( )[
+ ⋅ −( )] +

1 1 0 2 2 0exp exp

exp . .

k x k x

k x

ω ω

ω (4)

and

n N i i t

N i i t c c

l s s

s s

= ⋅ −( )
+ ⋅ −( ) +

1 1

2 2

exp

exp . .

k x

k x

ω

ω (5)

in Eqs. (1) and (2), one can show that

  
∂ = ( ) +( )z f eA i A N A Nω ω2

0 0 1 1 2 22 v * * , (6)

∂ +( ) = − ( ) +t s s s f sN i A A nν ω ω ν1 1
2

1 12* * * , (7)

∂ +( ) = − ( ) +t s s s f sN i A A nν ω ω ν2 2
2

2 22* * * . (8)

Because ωs << ω0, we made the approximation in Eq. (6) that
the frequency and group speed of the scattered light wave equal
the frequency and group speed v0 of the pump waves, respec-

P1863

(a)

(b)
ks2

k2

ks1

k1

kb

k2
ks2

k1

ks1

kf

Figure 75.31
Geometry associated with the SBS of crossed laser beams: (a) forward SBS;
(b) backward SBS.

tively. In Eqs. (7) and (8) νs N1 1
*  and νs N2 2

* are phenomeno-
logical terms that model the Landau damping of the sound
waves,12 and νs1n* and νs2n* are phenomenological terms that
maintain the density fluctuations associated with the sound
waves at their common noise level n* in the absence of
instability. Because the Landau-damping rates depend on the
magnitudes of the sound-wave vectors, but not on their direc-
tion, νs2 = νs1 = νs.

Equations (6)–(8) describe the initial (transient) evolution
of SBS. In steady state,

d A A A Az f f f= +( )µ 1
2

2
2

, (9)

where

  
µ ω ω ω ω νf e s s s= 2 2

0 04 v . (10)

Apart from a factor of A1
2  or A2

2, µf is the spatial growth
rate of forward SBS in the strongly damped regime.7 The
forward-scattered intensity F Af= 2  satisfies the equation

d F P P Fz f= +( )2 1 2µ , (11)

where P A1 1
2=  and P A2 2

2=  are the pump intensities.

The geometry associated with backward SBS is shown in
Fig. 75.31(b). The backward SBS of beam 1 is subject to
matching conditions of the form

ω ω ω1 1 1 1= + = +b s b s,     ,k k k (12)

where (ω1,k1) and (ωb, kb) satisfy the light-wave dispersion
equation, and (ωs1, ks1) satisfies the sound-wave dispersion
equation. Similar matching conditions apply to the backward
SBS of beam 2: as in forward SBS, ωs2 = ωs1 = ωs.

By adding to Ansatz (4) the term

A i i t c cb b bexp . .k x⋅ −( ) +ω (13)

and to Ansatz (5) the terms

N i i t N i i t c cs s s s1 1 2 2exp exp . .k x k x⋅ −( ) + ⋅ −( ) +ω ω (14)

associated with backward SBS, one can show that
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  −∂ = ( ) +( )z b eA i A N A Nω ω2
0 0 1 1 2 22 v * * , (15)

∂ +( ) = − ( ) +t s s s b sN i A A nν ω ω ν1 1
2

1 12* * * , (16)

∂ +( ) = − ( ) +t s s s b sN i A A nν ω ω ν2 2
2

2 22* * * . (17)

As in forward SBS, νs2 = νs1 = νs. In its transient (linear)
phase, backward SBS is independent of forward SBS.

In steady state, the backward-scattered intensity B Ab= 2

satisfies the equation

− = +( )d B P P Bz b2 1 2µ , (18)

where µb is given by Eq. (10) and the values of ωs and νs
associated with backward SBS. Apart from a factor of A1

2  or
A2

2, µb is the spatial growth rate of backward SBS in the
strongly damped regime.7

In the high-gain regime, the intensities of the scattered light
waves as they exit the plasma are comparable to the intensities
of the pump waves as they enter the plasma, and one must
account for the depletion of the pump waves within the plasma.
In steady state, the pump intensities satisfy the equations

d P FP BPz f b1 1 12 2= − −µ µ , (19)

d P FP BPz f b2 2 22 2= − −µ µ , (20)

where we made the approximation that the evolution of the
pump waves is one dimensional. One can verify Eqs. (19) and
(20) by applying the principle of power conservation to
Eqs. (11) and (18).

Linear Analysis of the Transient Phase
The forward SBS of crossed beams consists of two mirror-

image processes that share the same Stokes wave and, hence,
are governed by the coupled equations (6)–(8). By making the
substitutions ω0

1 2 Af → Af, i Ne sω ω1
1 2* → N1, i Ne sω ω2

1 2*

→ N2, i ne sω ω* 1 2 → n, and z v0 → z, one can rewrite these
equations as

∂ = +z f f fA N Nγ γ1 1 2 2 , (21)

∂ +( ) = +t s f f sN A nν γ ν1 1 , (22)

∂ +( ) = +t s f f sN A nν γ ν2 2 , (23)

where

γ ω ω ω ωf e s sA1 1 0
1 22= ( ) , (24)

γ ω ω ω ωf e s sA2 2 0
1 22= ( ) . (25)

Af is proportional to the action amplitude of the Stokes wave,
and N1 and N2 are proportional to the action amplitudes of the
sound waves. In the absence of damping, γf1 and γf2 are the
temporal growth rates of the forward SBS of beams 1 and 2,
respectively, in an infinite plasma.

By using the combined amplitudes

N N Nf f f+ = +( )γ γ γ1 1 2 2 , (26)

N N Nf f f− = −( )γ γ γ1 1 2 2 , (27)

where γ γ γf f f= +( )1
2

2
2 1 2

, one can rewrite Eqs. (21)–(23) as

∂ = +z f fA Nγ , (28)

∂ +( ) = ++ +t s f f sN A nν γ ν , (29)

∂ +( ) =− −t s sN nν ν , (30)

where n n f f f+ = +( )γ γ γ1 2  and n n f f f− = −( )γ γ γ1 11 2 .
Equations (28) and (29) are equivalent to the equations govern-
ing the forward SBS of an isolated beam,7 and Eq. (30) is
simple. Consequently, the solutions of Eqs. (28)–(30) can be
written in the form

A z t n G z z t t dz dtf
zt

s f, , ,( ) = − ′ − ′( ) ′ ′∫∫ +00
ν (31)

N z t n G z z t t dz dt
zt

s+ + +( ) = − ′ − ′( ) ′ ′∫∫, , ,
00

ν (32)

N z t n G z z t t dz dt
zt

s− − −( ) = − ′ − ′( ) ′ ′∫∫, , ,
00

ν (33)



FORWARD AND BACKWARD STIMULATED BRILLOUIN SCATTERING OF CROSSED LASER BEAMS

192 LLE Review, Volume 75

where the Green functions

G z t I zt tf f f s, exp ,( ) = ( )[ ] −( )γ γ ν0
1 22 (34)

G z t t z I zt

t z t

f f

s s

+ ( ) = ( ) ( )[ ]
× −( ) + ( ) −( )

,

exp exp ,

γ γ

ν δ ν

1 2
1

1 22

(35)

G z t z ts− ( ) = ( ) −( ), exp .δ ν (36)

In Eqs. (34) and (35), Im is the modified Bessel function of the
first kind, of order m. The original amplitudes N1 and N2 are
determined by Eqs. (32) and (33) and the inversion equations

N N Nf f f f1 1 2
2 2= ( ) + ( )[ ]+ −γ γ γ γ , (37)

N N Nf f f f2 2 1
2 2= ( ) − ( )[ ]+ −γ γ γ γ . (38)

Solutions (31)–(33) describe the growth and dissipative
saturation of forward SBS. By analyzing the time dependence
of the Green functions, one can show that the saturation time

t zs f s~ .γ ν2 2 (39)

The steady-state limits of solutions (31)–(33) are

A z n zf s f f s, exp ,∞( ) = ( ) ( ) −[ ]+ν γ γ ν2 1 (40)

N z n zf s+ +∞( ) = ( ), exp ,γ ν2 (41)

N z n− −∞( ) =, . (42)

Notice that 
  
γ ν µf s f A A2

0 1
2

2
2v = +( ), in agreement with

Eq. (9). If the interaction length exceeds a few gain lengths, one
can model Stokes generation as Stokes amplification with an
incident amplitude A nf s f0( ) = ( )+ν γ .

The backward SBS of crossed beams also consists of two
mirror-image processes that share a Stokes wave and are
governed by Eqs. (21)–(25), with f replaced by b and z
replaced by l−z; thus, Eqs. (26)–(42), and the conclusions
drawn from them, also apply to backward SBS. Equa-

tions (21)–(23) apply to other parametric instabilities driven
by crossed pump waves, provided that one type of daughter
wave is strongly damped.

Nonlinear Analysis of the Steady State
The simultaneous forward and backward SBS of crossed

beams is governed by Eqs. (11) and (18)–(20). By making the
substitution P1 + P2 → P, one can rewrite these equations as

d F PFz f= 2µ , (43)

− =d B PFz b2µ , (44)

d P F B Pz f b= − +( )2 µ µ . (45)

Equations (43)–(45) apply to other simultaneous parametric
instabilities driven by crossed pump waves, provided that one
type of daughter wave is strongly damped. For SBS, µb
= µf = µ,7 and one can use the substitution 2µz → z to rewrite
Eqs. (43)–(45) in the simple form

d F PFz = , (46)

− =d B PBz , (47)

d P F B Pz = − +( ) . (48)

The substitutions F/P(0) → F, B/P(0) → B, P/P(0) → P, and
P(0)z → z nondimensionalize Eqs. (46)–(48) but leave them
unchanged in form. Because the solutions of Eqs. (46)–(48) are
complicated, it is instructive to review the limiting solutions
that apply to forward and backward SBS separately.

1. Forward SBS
In the absence of backward SBS, Eqs. (46)–(48) reduce to

d F PFz = , (49)

d P FPz = − . (50)

It follows from these equations that

P F N f+ = +1 , (51)

where Nf = F(0) is incident (noise) intensity of the forward-
scattered wave. Since P ≥ 0, it follows from Eq. (51) that
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S Nf f≤ +1 , (52)

where Sf = F(l) is the output (signal) intensity of the forward-
scattered wave and l is the gain length of forward SBS.
Equation (52) reflects the fact that the signal intensity cannot
exceed the total input intensity.

By substituting Eq. (51) in Eq. (49), one can show that

1
1

+( ) =
+ −( )









N z

F

N N Ff
f f

log . (53)

Equation (53) determines the interaction distance z required
to produce the forward-scattered intensity F. By inverting this
equation, one finds that

F
N N

N

f f

f
ζ

ζ
( ) =

+( )
+ −( )

1

exp
, (54)

where ζ = +( )1 N zf . Solution (54) is consistent with Eq. (52).

The normalized intensities of the pump and Stokes waves in
a semi-infinite plasma are plotted as functions of the gain
distance z in Fig. 75.32, for the case in which Nf = 10−6. As the
Stokes intensity increases, the pump intensity decreases, in
accordance with Eq. (51). For future reference, notice that the
initial growth of the Stokes wave from noise is driven by an
undepleted pump wave.
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Figure 75.32
Normalized intensities plotted as functions of the gain distance for forward
SBS in a semi-infinite plasma. The solid line represents the pump wave; the
dashed line represents the Stokes wave. For forward SBS the output intensi-
ties from a finite plasma depend on the plasma length in the same way that the
intensities within a semi-infinite plasma depend on the distance from the
plasma boundary.

2. Backward SBS
In the absence of forward SBS, Eqs. (46)–(48) reduce to

− =d B PBz , (55)

d P BPz = − . (56)

It follows from these equations that

P B Sb− = −1 , (57)

where Sb = B(0) is the output (signal) intensity of the backward-
scattered wave. Since P ≥ 0, it follows from Eq. (57) that

S Nb b≤ +1 , (58)

where Nb = B(l) is the incident (noise) intensity of the back-
ward-scattered wave and l is the gain length of backward SBS.
Equation (58) reflects the fact that the signal intensity cannot
exceed the total input intensity.

By substituting Eq. (57) in Eq. (55), one can show that

1 1−( ) = − +( )[ ]S z S S B Bb b blog . (59)

The signal intensity is determined by Eq. (59) and the condition
B(l) = Nb. By inverting Eq. (59), with Sb known, one finds that

B
S S

S
b b

b
ζ

ζ
( ) =

−( )
( ) −
1

exp
, (60)

where ζ = −( )1 S zb . Solution (60), which was first obtained by
Tang,13 is consistent with Eq. (58).

The normalized output intensity of the Stokes wave is
plotted as a function of the gain length l in Fig. 75.33(a), for
the case in which Nb = 10−6. The normalized intensities of the
pump and Stokes waves within the plasma are plotted as
functions of the gain distance z in Fig. 75.33(b), for the case in
which Nb = 10−6 and l = 30. Because the pump and Stokes
waves propagate in opposite directions, the initial growth of
the Stokes wave from noise is driven by a depleted pump wave
[Fig. 75.33(b)]. Consequently, when pump depletion is impor-
tant (l > 10), the rate at which the Stokes output intensity
increases with gain length is slower for backward SBS
[Fig. 75.33(a)] than for forward SBS (Fig. 75.32). Backward
SBS scatters the pump power less efficiently than forward SBS.
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3. Simultaneous Forward and Backward SBS
When forward and backward SBS occur simultaneously, it

follows from Eqs. (46)–(48) that

P F B N Sf b+ − = + −1 (61)

and

FB N Sf b= . (62)

Equation (61) is a generalization of equations that apply to
the forward and backward instabilities separately, whereas
Eq. (62) is peculiar to the combined instability. Since P ≥ 0, it
follows from Eq. (61) that

S S N Nf b f b+ ≤ + +1 . (63)

Equation (63) reflects the fact that the total signal intensity
cannot exceed the total input intensity. It follows from
Eqs. (62) and (63) that
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Figure 75.33
(a) Normalized output intensity of the Stokes wave plotted as a function of the
gain length l for backward SBS. (b) Normalized intensities within the plasma
plotted as functions of the gain distance for l = 30. The solid line represents
the pump wave; the dashed line represents the Stokes wave.

S N
N

N Nf f
f

f b
≤ +

+
, (64)

S N
N

N Nb b
b

f b
≤ +

+
. (65)

By substituting Eqs. (61) and (62) in Eq. (46), one can show
that

d F R F R Fz = −( ) +( )+ − , (66)

where

± = + − ± + −( ) +[ ]±2 1 1 42 1 2
R N S N S N Sf b f b f b . (67)

It follows from Eq. (66) that

R R z
R N R F

R F R N

f

f
+ −

+ −

+ −
+( ) =

−( ) +( )
−( ) +( )













log . (68)

Sb is determined by Eq. (68) and the condition B(l) = Nb, which
is equivalent to the condition F l N N Sf b b( ) = ( ) . By inverting
Eq. (68), with Sb known, one finds that

F
R R N R R N

R N R N

f f

f f
ζ

ζ
ζ

( ) =
+( ) ( ) − −( )
+( ) ( ) + −( )

+ − − +

− +

exp

exp
, (69)

where ζ = +( )+ −R R z . Solution (69) is consistent with
Eq. (64). For the common case in which 1−Sb >> Nf, one
can use the approximate roots

R S N Sb f b+ ≈ − + −( )1 1 , (70)

R N S Sf b b− ≈ −( )1 , (71)

to rewrite Eqs. (68) and (69) as

1
1 1

1
−( ) ≈

−( ) + −( )[ ]
− −( )












S z

S N S S F

S F Nb
b f b b

b f
log (72)

and

F
N S S

N S

f b b

f b

ζ
ζ

ζ
( ) ≈

−( ) ( ) −[ ]
( ) + −( )

1

1
2

exp

exp
, (73)

respectively, where ζ ≈ −( )1 S zb .
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The normalized (total) output intensity of the (forward and
backward) Stokes waves is plotted as a function of the gain
length l in Fig. 75.34(a), for the case in which Nb = Nf
= 10−6. When pump depletion is unimportant (l < 10), the
Stokes output intensity of the combined instability is the sum
of the Stokes output intensities of the forward and backward
instabilities. The normalized intensities of the pump and Stokes
waves within the plasma are plotted as functions of the gain
distance z in Fig. 75.34(b) for the case in which Nb = Nf
= 10−6 and l = 30. The initial growth of both Stokes waves from
noise is driven by a depleted pump wave. Consequently, when
pump depletion is important (l > 10), the rate at which the
Stokes output intensity increases with gain length is slower
for the combined instability than for the forward instability
[Fig. 75.34(a)].
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Figure 75.34
(a) Normalized output intensities plotted as functions of SBS gain length l.
The forward and backward noise intensities are equal. The solid line repre-
sents the total output intensity for the combined instability. For comparison,
the dot–dashed and dashed lines represent the output intensities when forward
and backward SBS occur separately [Figs. 75.32 and 75.33(a), respectively].
(b) Normalized intensities within the plasma plotted as functions of the gain
distance for l = 30. The solid line represents the pump wave, the dot–dashed
line represents the forward Stokes wave, and the dashed line represents the
backward Stokes wave.

In Figs. 75.32–75.34, the noise intensities for forward and
backward SBS were equal. This choice made possible a fair
comparison of the intrinsic scattering efficiencies of the two
instabilities. The noise intensity for forward SBS is larger,
however, than the noise intensity for backward SBS because
the action sources that generate the light waves [Eq. (40) for
forward SBS and its analog for backward SBS] are inversely
proportional to the sound frequencies.14 To illustrate how this
imbalance affects the combined instability, the normalized
output intensity of the Stokes waves is plotted as a function of
the gain length in Fig. 75.35(a) for the case in which Nf
= 10−16 and Nb = 10−7. The normalized intensities of the pump
and Stokes waves within the plasma are plotted as functions of
the gain distance in Fig. 75.35(b) for the case in which Nf
= 10−6, Nb = 10−7, and l = 30. It is clear from the figures that
forward SBS overwhelms backward SBS in steady state.
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Figure 75.35
(a) Normalized output intensities plotted as functions of SBS gain length l.
The forward noise intensity exceeds the backward noise intensity by a factor
of 10. The solid line represents the total output intensity for the combined
instability. For comparison, the dot–dashed and dashed lines represent the
output intensities when forward and backward SBS occur separately.
(b) Normalized intensities within the plasma plotted as functions of the gain
distance for l = 30. The solid line represents the pump wave, the dot–dashed
line represents the forward Stokes wave, and the dashed line represents the
backward Stokes wave.
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Discussion
Initially, pump depletion is unimportant, and forward and

backward SBS grow independently. This (linear) spatio-
temporal growth is described by Eqs. (28)–(30). Since the
growth rate γ φf ∝ ( )sin 1 2  [Eqs. (24) and (25)], the sound-
wave damping rate νs ∝ sinφ, and the saturation time
ts ∝ ( )1 sinφ  [Eq. (39)], where 2φ is the scattering angle,
backward SBS grows and saturates more quickly than forward
SBS.7 The steady-state (nonlinear) spatial evolution of back-
ward SBS is described by Eqs. (57) and (60). In the high-gain
regime, backward SBS depletes the pump wave significantly
[Fig. 75.33(b)]; thus, the spatiotemporal growth of forward
SBS is driven by a pump wave whose intensity varies with
distance, and Eqs. (31)–(36) do not apply as written. By
making the substitutions N Nf± ±→γ , n nf± ±→γ , and

γ f
z

z dz z′( )[ ] ′ →∫
2

0
 in Eqs. (28)–(30), however, one can show

that

∂ = +z fA N , (74)

∂ +( ) = ++ +t s f sN A nν ν , (75)

∂ +( ) =− −t s sN nν ν . (76)

Since Eqs. (74)–(76) contain no variable coefficients, their
solution can be inferred from Eqs. (31)–(36). It follows that the
(linear) saturation time of forward SBS is given by Eq. (39),
with γ 2z replaced by γ f

z
z dz′( )[ ] ′∫

2
0

. Since the saturation time
is proportional to the (integrated) gain distance, the reduction
of the gain distance by pump depletion shortens the saturation
time of forward SBS. Since the steady-state (nonlinear)
Eqs. (46)–(48) have a unique solution, the spatial evolution of
the combined instability is given by Eqs. (61), (62), and (69),
even though forward and backward SBS grow at different
rates and saturate at different times. It is clear from Figs. 75.34
and 75.35 that the output intensity of the backward Stokes
wave is lower in the presence of the forward Stokes wave than
in its absence; thus, the combined instability is characterized
by a burst of backward SBS followed by the ascendance of
forward SBS.

The major theme of the Nonlinear Analysis of the Steady
State section and the preceding discussion is that forward and
backward SBS coexist and compete for the pump energy. One
should remember that several other processes also coexist and
modify this competition. These processes include double SBS,9

which is made possible by a sound wave whose wave vector is
the sum of the pump-wave vectors, and the transfer of energy

between the pump waves15–21 and the Bragg scattering of the
pump waves,16 both of which are made possible by a sound
wave whose wave vector is the difference of the pump-wave
vectors; thus, the interaction physics is even richer than the
physics discussed herein.

Summary
In this article we studied in detail the simultaneous forward

and backward SBS of crossed laser beams. We obtained
new analytical solutions for the linearized equations governing
the transient phase of the instability [Eqs. (21)–(23)] and
the nonlinear equations governing the steady state
[Eqs. (46)–(48)]. In their transient phases, forward and back-
ward SBS grow independently. Initially, backward SBS grows
more quickly than forward SBS. As the backward Stokes wave
grows, it depletes the pump wave and modifies the growth of
the forward Stokes wave. In steady state, forward SBS domi-
nates the combined instability because the forward Stokes
wave has a larger noise intensity from which to grow and
forward SBS scatters the pump power more efficiently.

In the Appendix we show that the equations governing the
simultaneous near-forward and near-backward SBS of an iso-
lated beam are equivalent to the equations governing the
simultaneous forward and backward SBS of crossed beams;
thus, the results of this article also apply to the SBS of an
isolated beam.

ACKNOWLEDGMENT
This work was supported by the National Science Foundation under

contract No. PHY-9415583, the U.S. Department of Energy Office of Inertial
Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460,
the University of Rochester, and the New York State Energy Research and
Development Authority. The support of DOE does not constitute an endorse-
ment by DOE of the views expressed in this article.

Appendix A:  Forward and Backward SBS
of an Isolated Laser Beam

In this appendix we show that the equations governing the
simultaneous forward and backward SBS of an isolated beam
are equivalent to the equations governing the simultaneous
forward and backward SBS of crossed beams. The geometry
associated with the forward SBS of an isolated beam is shown
in Fig. 75.36(a). Each forward-scattering process is subject to
matching conditions of the form

ω ω ω0 0= + = +f s f s,     ,k k k (A1)

where (ω0, k0) and (ωf, kf) satisfy the light-wave dispersion
equation ω ω2 2 2 2= +e c k , and (ωs, ks) satisfies the sound-
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wave dispersion equation ω 2 2 2= c ks . Because the frequencies
of the daughter waves depend on the magnitude of their wave
vectors, but not on their directions, ωf2 = ωf1 = ωf and ωs2
= ωs1 = ωs.

By substituting the Ansätze

A A i i t A i i t

A i i t c c

h f f f

f f f

= ⋅ −( ) + ⋅ −( )[
+ ⋅ −( )] +

0 0 0 1 1

2 2

exp exp

exp . .

k x k x

k x

ω ω

ω (A2)

and

n N i i t

N i i t c c

l s s

s s

= ⋅ −( )
+ ⋅ −( ) +

1 1

2 2

exp

exp . .

k x

k x

ω

ω (A3)

into Eqs. (1) and (2), and making the slowly varying envelope
approximation, one can show that each forward-scattering
process is governed by equations of the form

  
∂ = ( )z f eA i A Nω ω2

0 0 02 v * , (A4)

P1888

(a)

(b)

ks2kb2

ks1

kb1

k0

kf2
ks2

kf1

ks1

k0

Figure 75.36
Geometry associated with the SBS of an isolated laser beam: (a) near-forward
SBS; (b) near-backward SBS.

∂ +( ) = − ( ) +t s s s f sN i A A nν ω ω ν* * * .2
02 (A5)

In Eq. (A5), νsN* is a phenomenological term that models the
Landau damping of the sound wave, and νsn* is a phenom-
enological term that maintains the density fluctuations associ-
ated with the sound wave at their noise level n* in the absence
of instability. Because the Landau-damping rates depend on
the magnitudes of the sound-wave vectors, but not on their
directions, νs2 = νs1 = νs. By making the substitutions
ω0

1 2 A Af f→ , i N Ne sω ω* 1 2 → , i n ne sω ω* 1 2 → , and

  z zv0 → , one can rewrite Eqs. (A4) and (A5) as

∂ =z f fA Nγ , (A6)

∂ +( ) = +t s f f sN A nν γ ν , (A7)

where

γ ω ω ω ωf e s sA= ( )0 0
1 2

2 . (A8)

Equations (A6) and (A7) are equivalent to Eqs. (28) and (29),
the solution of which was described in the text.

Equations (A4) and (A5) describe the transient evolution of
forward SBS. In steady state,

d A A Az f f f= µ 0
2 , (A9)

where

  
µ ω ω ω ω νf e s s s= 2 2

0 04 v . (A10)

Notice that 
  
µ γ νf f sA0

2 2
0= v  is in agreement with

Eqs. (A6)–(A8). It follows from Eq. (A9) that the forward-
scattered intensities F Af1 1

2=  and F Af2 2
2=  satisfy the

equations

d F PFz f1 12= µ , (A11)

d F PFz f2 22= µ , (A12)

where P A= 0
2  is the pump intensity.

The geometry associated with the backward SBS of an
isolated beam is shown in Fig. 75.36(b). Each backward-
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scattering process is subject to matching conditions of the form

ω ω ω0 0= + = +b s b s,    ,k k k (A13)

where (ω0, k0) and (ωb, kb) satisfy the light-wave dispersion
equation, and (ωs, ks) satisfies the sound-wave dispersion
equation. As in forward SBS, ωb2 = ωb1 = ωb and ωs2
= ωs1 = ωs.

By adding to Ansatz (A2) the terms

A i i t

A i i t c c

b b b

b b b

1 1

2 2

exp

exp . .

k x

k x

⋅ −( )
+ ⋅ −( ) +

ω

ω (A14)

and to Ansatz (A3) the terms

N i i t

N i i t c c

s s

s s

1 1

2 2

exp

exp . .

k x

k x

⋅ −( )
+ ⋅ −( ) +

ω

ω (A15)

associated with backward SBS, one can show that each back-
ward-scattering process is governed by equations of the form

  −∂ = ( )z b eA i A Nω ω2
0 0 02 v * , (A16)

∂ +( ) = − ( ) +t s s s b sN i A A nν ω ω ν* * * .2
02 (A17)

As in forward SBS, νs2 = νs1 = νs. It follows from Eqs. (A16)
and (A17) that the transient evolution of backward SBS is
governed by Eqs. (A6)–(A8), with f replaced by b and z
replaced by l−z. Equations (A6) and (A7) apply to other
parametric instabilities driven by an isolated pump wave pro-
vided that one type of daughter wave is strongly damped. In
steady state, the backward-scattered intensities B Ab1 1

2=
and B Ab2 2

2=  satisfy the equations

− =d B P Bz b1 12µ , (A18)

− =d B P Bz b2 22µ , (A19)

where µb is given by Eq. (A10), with f replaced by b.

In the high-gain regime, the intensities of the scattered
waves as they exit the plasma are comparable to the intensity
of the pump wave as it enters the plasma, and one must account
for the depletion of the pump wave within the plasma. In steady

state, the pump intensity satisfies the equation

d P F F B Bz f b= − +( ) − +( )2 21 2 1 2µ µ . (A20)

By making the substitutions F = F1 + F2 and B = B1 + B2 in
Eqs. (A11), (A12), (A18), (A19), and (A20), one can show that
the simultaneous forward and backward SBS of an isolated
beam is governed by the equations

d F P Fz f= 2µ , (A21)

− =d B P Bz b2µ , (A22)

d P F B Pz f b= − +( )2 µ µ . (A23)

Equations (A21)–(A23) are equivalent to Eqs. (43)–(45), the
solution of which was described in the text. It is clear from the
derivation of Eqs. (A21)–(A23) that one can interpret F as the
intensity scattered forward over the entire range of angles for
which propagation in the z direction is a reasonable approx-
imation, and one can interpret B as the intensity scattered
backward over the entire range of angles for which propagation
in the −z direction is a reasonable approximation. Equa-
tions (A21)–(A23) apply to other parametric instabilities driven
by an isolated pump wave, provided that one type of daughter
wave is strongly damped. For SBS, µb = µf = µ,7 and one can
use the substitution 2µz → z to rewrite Eqs. (A21)–(A23) in
the form of Eqs. (46)–(48).
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