Three-Dimensional Analysis of the Power Transfer
Between Crossed Laser Beams

The indirect-drive approach to inertial confinement fusion
involves laser beams that overlap as they enter the hohlraum.
Because a power transfer between the beams affects the implo- 1
sion symmetry adversely, it is important to understand the
mechanisms that make such a power transfer possible.

The power transfer between crossed laser beams made
possible by an ion-acoustic (sound) wave (grating) has been 2
studied theoreticalkr® and experimentall§.” Previously*
we made a two-dimensional analysis of the power transfer
between beams with top-hat intensity profiles in a homoge-F82
neous plasma. In this article we extend our previous analysis to

include three dimensions and arbitrary intensity profiles. ~ Figure 73.34 _ o
Geometry of the interaction of crossed laser beams. The characteristic

. . L N . coordinatex andy measure distance in the propagation directions of beams
The interaction geometry is illustrated in Fig. 73.34. Notice; 4 » respectively.

that the beam axes intersect at the origin. It was shown in
Ref. 4 that the steady-state interaction of the beams is governed

by whereg is the frequency of beajny; is the group speed of
beanj, w=w;—w, is the difference between the beam frequen-
Oy A = (i a; - /31)|A2|2Ala cies, z.indws = cs|k1 - k2.| andvs.are the sound freguency and
_ ) (1) damping rate, respectively. Slnbs| << w4y, the differences
by =(iaz+ Bo)|A|" Ay, betweernw; andw,, andv, andv,, can be neglected in Egs. (2).

Henceforth, the subscripts on the nonlinear coefficients will be
where the characteristic variabbeandy measure distance in omitted. These coefficients characterize the way in which the
the propagation directions of beams 1 and 2, respectively. Thgrating responds to the low-frequency ponderomotive force.
beam amplitudeA; = (uj /cs)(me/r‘ni)]/2 is the quiver veloc- Apart from a factor of|AL|2, at resonancg is the spatial
ity of electrons in the high-frequency electric field of bgam growth rate of stimulated Brillouin scattering (SBS) in the
divided by a speed that is of the order of the electron thermatrong-damping limit.
speed. The nonlinear coefficients )

It follows from Egs. (1) that the beam intensitigs= |AJ- |
satisfy the equations

202( 2 — 092
wews(ws a))

aj = , Oy ly ==2B5l1, dylo =2B415. 3)
i ijvj%wsz—wz)2+4v§w25 xl1==2B151; vlo =2B141,
) The boundary conditions are
WA W
Bj = v 0 Li(=.%.2) = 9i(y.2),  la(x—0,2)=3p(x.2), ()
wjV; gwg—wz) +4v§wzE

whereJ;(y,2 andJ,(x,2 are the upstream intensity profiles of
the beams.
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It follows from Egs. (3) that the beam evolution in anyEquation (10) and the relations = P, and 1, =

characteristic plane, labeled by the associated valagisf J; exp(-20P,) are consistent with solutions (9).

independent of the beam evolution in the neighboring planes.

Consequently, the method used in Ref. 4 to analyze the two- It follows from Egs. (7) and (10) that

dimensional interaction of the beam applies, with minor modi-

fications, to the three-dimensional interaction considered herein.  P>(X, Y, 2) = Po(X,—,2) = B(-,y,2) - B(x,y,2), (11)

This method was used by several autfidi&to study the

interaction of two pulses in one spatial dimension and time.which reflects the fact that the power gained by beam 2 must

equal the power lost by beam 1. The power transfer for each

It is convenient to define slice, T(2) = Py(c0,00,2) — Py(c0,~,2), is given by

Fi(x,y,z):ffm li(x,y',2)dy’, 2,8T:Iog{exp(—wz)+exp(W1)[l—eXD(—W2)]}, (12)

5
Po(x.y,2) = 7, 1o(X,y,2)dx". ©
where wy(2) =n(e,2) and wy(2) = &(w,2) are the normal-
Physically,P1(x,%,2) is the power per unit height in the slice of ized beam widths.
beam 1 that is a distancefrom the center the interaction
region, andP,(«,y,z) is the power per unit heightin the slice of ~ Whena # 0, the interaction of beams 1 and 2 causes their
beam 2 that is a distangdrom the center of the interaction phases to be shifted lgy andg,, respectively. By modifying
region. By combining Egs. (3) and (5), one can show that the analysis of Ref. 4, one can show that the downstream phase
shifts

0B = J[1- exp(2R)]. © A =aR(wy2). px2)=aR(x=2. (13

It follows from Eq. (6) that According to the laws of geometric optics, the beams are
deflected in the direction of increasing phase shift.

2P =" Iog{l— exp(—f)[l— exp(—n)]} ' O Equations (9), (12), and (13) are valid for arbitrary upstream
intensity profiles. In the following examples we consider three
where the distance variables different profiles: The first profilel (u,v) = exp(—u2 —v2), is
Gaussian, as illustrated in Fig. 73.35(a). The second profile,
I(u,v) = exp(—u2 - v2)cosz(nu) cos?(mv), has hot spots with
a central maximum, as illustrated in Fig. 73.35(b). The third
profile, I(u,v)= exp(—u2 —vz)sinz(nu)sinz(nv), has hot
It follows from Eq. (7), and the relationlg = 4P, and  spots with a central minimum, as illustrated in Fig. 73.35(c). In

E=2B[7, J(x.2)dx', n=2Bf" Y(y.2)dy. (8)

[, =3, exp(28P,), that Figs. 73.36—73.41 all intensities are normalizel tbe peak
upstream intensity of a Gaussian beam; all distances are
. Jyexp(-n) normalized to 1/81, the SBS gain length; and all phase shifts
1 exp(€) -1+ exp(-n)’ are normalized tor/2.
9 . . . .
3 (E) ©) In the first example the upstream intensity profiles
ex
I, = 2 &P _ Il(y,z):exp(—yz—zz) and I5(x,2)=05 exp(—xz—zz)
exp(¢) -1+ exp(-n) are Gaussian. Contour plots of the downstream intensity pro-

files of beams 1 and 2 are displayed in Figs. 73.36(a) and
By combining Egs. (3) and (5), one can also show that 73.36(b), respectively. The downstream intensity of beam 2,
which has a maximum of 1.2, is higher than the upstream
2P, = Iog{1+exp(n)[exp(£) _1]}. (10) intensity of beam 1. Both beams are distorted by the interac-
tion. Beam 2 grows as it propagates in the posytiieection.
Consequently, more power is siphoned fromytke0 side of
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Figure 73.35

Logarithmic contour plots of the upstream intensity profiles used to generate Figs. 73.36—73.41. White represents highlatkmnsjiresents low intensity.
(a) Gaussian profile; (b) profile with hot spots and a central maximum; (c) profile with hot spots and a central minimum.

(@) (b)

Figure 73.36

Logarithmic contour plots of the downstream

intensity profiles of (a) beam 1 and (b) beam 2
corresponding to upstream intensity profiles that
are Gaussian. White represents high intensity;
black represents low intensity. Both beams are
distorted by the interaction, and their centroids
are shifted.

Figure 73.37

Linear contour plots of the downstream phase
shifts of (a) beam 1 and (b) beam 2 correspond-
ing to upstream intensity profiles that are
Gaussian. White represents alarge positive phase
shift; gray represents a small positive phase
shift; and black represents a phase shift of zero.
Since the beams are deflected in the direction of
increasing phase shift, beam 1 is deflected in the
positivey direction and beam 2 is deflected in the
negativex direction. The upper and lower parts
of both beams are deflected toward frexis.
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beam 1 than from thg< O side, and the centroid of beam 1is In the second example the upstream intensity profiles
shifted in the negativiedirection. The downstream intensity of 11(y,2) = 4 exp €y2 - 22 cog (1y) cog (1) andly(x,2) =
beam 1 has off-axis maxima because the on-axis slice &f exp £x2 — %) cog (1x) co¥ (rz) produce intersecting
beam 1 drives the interaction with the corresponding slice dflaments. The factors of 4 were included to make the beam
beam 2 most strongly and is depleted most severely. Beam lgewers in this example approximately equal to the beam
depleted as it propagates in the positvelirection. The powers in the first example. Contour plots of the downstream
centroid of beam 2 is shifted in the negakidirection because intensity profiles of beams 1 and 2 are displayed in
more power can be siphoned from the undepleted parts of bedfigs. 73.38(a) and 73.38(b), respectively. The maximal inten-
1 than from the depleted parts. Contour plots of the dowrsity of beam 2 is 4.6. According to Egs. (9), the downstream
stream phase shifts of beams 1 and 2 are displayed intensities are the products of the upstream intensities and
Figs. 73.37(a) and 73.37(b), respectively. The maximal phas®nlinear transfer functions that depend on the (spatially
shift of beam 1 is 2.2. Since the beams are deflected in thetegrated) power per unit height of each slice. Thus, the
direction of increasing phase shift, beam 1 is deflected in thatensity profiles in this example evolve in a manner similar to
positivey direction and beam 2 is deflected in the negative those in the first example: The centroid of beam 1 is shifted in
direction (@ > 0). The upper and lower parts of both beams aréhe negativey direction, and the centroid of beam 2 is shifted
deflected toward the axis @ > 0). in the negativex direction. In this example, however, the

(@) (b)

Figure 73.38

Logarithmic contour plots of the downstream
intensity profiles of (a) beam 1 and (b) beam 2
corresponding to upstream intensity profiles that
produce intersecting filaments. White represents
high intensity; black represents low intensity.
The beam distortions are more pronounced in
this figure than in Fig. 73.36 because the hot-
spot intensities are higher than the correspond-
ing intensities of Gaussian beams.

Figure 73.39

Linear contour plots of the downstream phase
shifts of (a) beam 1 and (b) beam 2 correspond-
ing to upstream intensity profiles that produce
intersecting filaments. White represents a large
positive phase shift; gray represents a small
positive phase shift; and black represents a phase
shift of zero. Beam 1 is deflected in the positive
y direction, and beam 2 is defected in the nega-
tive x direction. The upper and lower parts of
each row of hot spots are deflected toward the
center of the row.
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distortions are more pronounced because some slices containin the third example the upstream intensity profiles
twice the power per unit height of the corresponding slices ify(y,2) = 4 exp €y? - 72) co€ (1y) co (12) andl,(y,X) =

the first example. Contour plots of the downstream phase shifisexp €x2 — 72) sir? (7x) sir? (1) produce nonintersecting

of beams 1 and 2 are displayed in Figs. 73.39(a) and 73.39(lfiijaments. Contour plots of the downstream intensity profiles
respectively. The maximal phase shift of beam 1 is 5.1. Beaof beams 1 and 2 are displayed in Figs. 73.40(a) and 73.40(b),
lis deflected in the positiyadirection, and beam 2 is deflected respectively. The maximal intensity of beam 2 is 2.6. The
in the negativex direction @ > 0). The upper and lower parts distortions of the intensity profiles in this example are similar
of each row of hot spots are deflected toward the center of thie those in the first and second examples. They are less
row (a > 0). pronounced, however, because the upstream intensity profiles

(b)

Figure 73.40

Logarithmic contour plots of the downstream
intensity profiles of (a) beam 1 and (b) beam 2
corresponding to upstream intensity profiles that
produce nonintersecting filaments. White repre-
sents high intensity; black represents low inten-
sity. The beam distortions are less pronounced in
this figure than in Fig. 73.36 because the beam
filaments do not interact strongly.

Figure 73.41
Linear contour plots of the downstream phase shifts of (a) beam 1 and (b) beam 2 corresponding to upstream intensktgtpraddlesé nonintersecting
filaments. White represents a large positive phase shift; gray represents a small positive phase shift; and black rppessestsfaof zero. The beam

deflections associated with this figure are less important than those associated with Fig. 73.39 because the regidresefsaifjape aligned with the regions
of low intensity.
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produce filaments that do not interact strongly. Contour plotREFERENCES

of the downstream phase shifts of beams 1 and 2 are displayeq
in Figs. 73.41(a) and 73.41(b), respectively. The maximal
phase shift of beam 1is 2.1. According to Egs. (13), each bean®.
acquires a phase shift that reflects the intensity profile of the
other beam. The regions of large phase shift, however, are”
aligned with the regions of low intensity, and beam deflec- 4.
tions are less important in this example than in the first and
second examples.

In summary, we made a three-dimensional analysis of the
power transfer between crossed laser beams with arbitraryS'
upstream intensity profiles. We derived simple formulas for the
downstream intensity profiles [Eqgs. (9)], the power transfer 6.
[Eq. (12)], and the downstream phase shifts that depend on the
power transfer [Egs. (13)]. The power transfer shifts the beam
centroids, and the phase shifts alter the beam directions and
focal lengths. For beams with hot spots in their upstream 8
intensity profiles, the power transfer depends sensitively on o
whether the associated filaments intersect.
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