Sideward Stimulated Raman Scattering of a Short Laser Pulse
in a Plasma Channel

Stimulated Raman scattering (SR®) the decay of an inci- The SRS of a short laser pulse is important in the contexts
dent, or pump, light wave (0) into a frequency-downshifted, oof particle acceleratidrand inertial confinement fusic* In
Stokes, light wave (1) and an electron-plasma wave (2). Tharevious studies of the spatiotemporal evolution of SRE,
conservation of energy and momentum in this decay is signithe Stokes waves were allowed to pass freely through the pulse
fied by the frequency and wave-vector matching conditions boundaries. However, the radial ponderomotive force associ-
ated with the pulse can expel plasma from the neighborhood of
Wy =Wy +wy, kg =ky+ksy, (1)  thepulse axis, in which case SRS occurs in a plasma chédnnel.
A channel can also be preformed by a second pal3ae
in which (an,kg) and v,kq) satisfy the dispersion relation reflection of light by the channel walls couples Stokes waves
w= (wg + czkz)llz, where w, is the electron-plasma fre- propagating symmetrically relative to the pulse axis, as shown
quency! and ,,k,) satisfies the dispersion relation= cw. in Fig. 71.24(b), and enhances the growth of oblique SRS.
The wave-vector matching condition is illustrated in

Fig. 71.24(a). In this study we investigate the effects of reflections on
sideward SRS in a plasma channel. Sideward SRS is a useful
(a) paradigm of obligue SRS because its two-dimensional geom-

etry is representative of obligue SRS, but simple enough to
preclude some of the mathematical complications associated
with oblique SRS3 To analyze SRS in an optical fiber, one
decomposes the radial structure of the waves into the eigen-
modes of the fibe} We avoid the difficulties associated with
the determination of the (evolving) channel profile and the
associated radial eigenmodes by using an empirical param-
eterr to characterize reflections from the channel wHlls.

\ 4
.

Mathematical Analysis
(b) Inthe weak-coupling regime, the initial evolution of sideward
SRS in an underdense plasma is governed by the linearized
equations

(0 £cay) A =yoNs. GN; = yoA.., )

X where A, represents the vector potentials associated with
P1703a - the Stokes waved), represents the density fluctuations
associated with the electron-plasma waves, and
Figure 71.24 Vo = wod ko| Ay /4(wows )2 is the temporal growth rate of
Geometry of sideward SRS. (a) Wave-vector diagram for the upward ( SRS in an infinite plasm]a]t is advantageous to define the

decay. The wave-vector diagram for the downwatddecay is similar.  characteristic variables = (Ct - X)/l andn =y/l, in terms of
(b) Region of the plasma illuminated by the laser pulse. which Egs. (2) become
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(5r + 5n)A¢ =yN,, o;N, =yA,, 3) _ For the special case in whick 1, the wave amplitudes are
given by
where y = ygl/c.18 These equations are to be solved subject A smh(yr), N+ cosh(yr). ®)
to the initial conditions Thus,the total reflection of the Stokes light maintains the fast
exponential growth of sideward SRS, even after the informa-
A.(0,7)=0, N.(0,n)=1, (4)  tion that the pulse boundaries are present has reached the

pulse interior A snapshot of the Stokes amplitude is displayed
which are representative of a pulse convecting into fresim Fig. 71.25(b) for the case in whia/| =2 and ygl/c=2.
plasma, in which a constant level of density fluctuations idt is evident that total reflection allows the wave evolution to
available to seed the instability, and the boundary conditionsemain one-dimensional and enhances the wave growth. What

must be determined is how large a reflectivity is needed to have

A(1,0)=r A(r,0), A(1,])=rA.(r.]). ) a significant effect.
For the general case in which @ < 1, the wave ampli-

It follows from Egs. (3)—(5) tha\_(7,n) = A.(1,1-n) and  tudes satisfy the reflection principle
N_(7,n) = N, (r,1-n). Consequently, only the solutions for

A, andN, will be stated explicitly. A+(T '7||’) - gr”m(r n+ n|0)
n=0
One can solve Egs. (3)—(5) by using Laplace transforms. ()]
For the special case in which= 0 the wave amplitudes are 0
given by Na(7,nr) = 3 r"Ny (7,7 +n0).
n=0
Bsinh(yr), Ebosh(yr),
A(t,n) =0 Ni(1,n) =0 (6) (@)
) F2n+1(T!’7)! ) F2n(TJ7), OF :
[h=0 [h=0

where

Distance y

Fa(z.n) =[n/(r )" ln{2y[n(T - n)]m} (7)

andl, is the modified Bessel function of order The first
forms of Eqgs. (6) are valid far< np and the second forms are
valid fort >n. Atany pointk,y) in the plasma, the pulse arrives
and initiates the instability dt= x/c, after which the Stokes
amplitude experiences exponential growth with growthygte
The information that the side boundaryyat 0 is present
reaches that point &t= (x +y)/c, after which the Stokes wave
experiences Bessel growth. Sintg(z) = exp(2)/(2r2)"' 2
whenz >> 1, the Stokes amplitude grows in proportion to ok , ]
exp[ZyO(yt/c)llzlI when t >>(x +y)/c. At these late times, 0.0 0.5 1.0 15 2.0

t >> (yt/c)Y/2 Thus,the sideward convection of the Stokes

wave converts fast exponential growth to slow Bessel growth 7%

A snapshot of the Stokes amplitude is displayed irkigyre 71.25

Fig. 71.25(a) for the case in whidtyl =2 and ygl/c=2.19  Contour plots of the logarithm of the Stokes intensity for cases in which
The transition from one-dimensional exponential growth tet! = 2 and yl/c = 2. White corresponds to high intensity and black
two-dimensional Bessel growth is evident. corresponds to low intensity. (ay 0; (b)r = 1.

Distance y

Distance x
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For 0 < n < 1 the fundamental solution&(r,mo) and scribed by the approximate Eqgs. (11)—(13) is displayed in

N+(T,/7|0) are given by Egs. (6). Feor> 1 the fundamental Fig. 71.26(b). Although the approximate solutions (11) are

solutions are zero until= — 1. Subsequently, inaccurate near the leading edge of the pulse, as one should
expect, they are extremely accurate in the body of the pulse.

O. o The growth rate (12) is plotted as a functiom of Fig. 71.27
gmh(yr)— OF2n+1(T"7_1)! for the case in whichygl/c=2. For this case = 0.05 is
n=
Arnlo)=0, . (@
a
E}Z Fon+a(T.17) = > Fonsa(T.0-1), 1.0F
=0 n=0
(10)
D [ > 08 [
reosh(yr) = 3 Fon(T.1 1), 8 o al
_ O n=0 c 0.6
Ni(z.nl0) =0 o 3 04
%z Fan(T.1) = 3 Fan(T.0 1), a
=0 n=0 0.2}
where the first forms are valid far—1< 7 < n and the second 0.0™
forms are valid for > . The modification of solutions (6) 10 (b)
described by Eqgs. (10) is associated with a pulse of infinite T
width and the initial conditiorN,, (0,n) = H(1- 1), whereH .. 08}
is the Heaviside step function. At early times, the wave ampli- & 0.61
tudes grow exponentially in time with growth ragg At § '
intermediate and late times the solutions involve doubly infi- -‘Dﬁ 0.4}
nite sums of Bessel functions that represent the fundamental 0.2t
contributions to the wave amplitudes and the contributions 0.0
caused by reflections at the pulse boundaries. A snapshot of 0.0 05 10 15 20

the Stokes amplitude described by the exact Egs. (6), (9), and
(10) is displayed in Fig. 71.26(a) for the case in whisi®.5, P1787
ct/l = 2, andyl/c = 2. By comparing Figs. 71.25(a) and
71.26(a), one can see that reflections do not affect the wav¥égure 71.26

evolution in the regiory > ct—x. Reflections affect the wave Contour plots of the logarithm of the Stokes intensity for the case in which

evolution sianificantly in the redion < ct—x. Desbite the ctl = 2, pl/c = 2, andr = 0.5. White corresponds to high intensity and
9 y gloy ) P black corresponds to low intensity. (a) Exact solution described by Egs. (6),

complexity of solutions (9), by analyzing the Laplace-transzg)’ and (10); (b) approximate solution described by Eqs. (11)—(13).
formed solutions from which they originated one can show

that, at late times,

Distance x

1'0 -_I ToTTTT T ToTTTT T ToTTTT T T """I_-
y(1-r)exp(vn + A7) : ]
] r= - -
As(r.l) v(2A +v) Q 081 ]
(11) f__E 0.6F ]
2(1-r)exp(vn + AT = ; 5
N, (7, 7lr) = y2(L-r)exp(vn ) S 04Ff ]
Av(24 +v) 0} s ]
0.2} ]
where : ]
/\:—V/2+(y2+V2/4)1/2 (12) 0.0 -'| R BT S R ......|'-
0.0001 0.001 0.01 0.1 1.0

is the growth rate and P1788 Reflectivity

v=-logr (13)
Figure 71.27

characterizes the convective loss of Stokes light through th¢ormalized growth rate [Eq. (12)] plotted as a function fdr the case in
pulse boundaries. A snapshot of the Stokes amplitude d&bhichyl/c=2.
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sufficient to maintain exponential growth with= 0.5y, In (a)
general,r = exp(—3y/2) is sufficient to maintain this rate of 1.2FT \ ' ' ' ™
exponential growth. Thugyven weak reflections enhance the 2 10l — i
growth of sideward SRS significantly % oglk \ ]
S
Physical Model o 0.61 A |
Because of the significance of Egs. (11)—(13), it is impor- % 0.4+ N l
tant to understand the physical principles on which they are &7 02f M .
based. The eigenmodes of a fiber are formed by internal 0.0 L, | ! ; 3
reflection, and their existence is not predicated on the existence 0 2 4 6 8
of SRS16 These facts prompt the solution of Egs. (3) and (5), Time
with y= 0. Subject to the initial conditions
(b)
A(0.)=1, (14) o 10f T T /T 7
i ons i 2 o8l _ -7 -
the solution of these equations is = _t+
E 06} —— -
G —
w0 @ 04t .
A(t,n)= Y r[H(r+1-n-n)=H(t-n-n)]. (15) X
n=0 B 0.2 i
0.0, . . . ! =
Solution (15) is displayed in Fig. 71.28, together with the 00 02 04 06 08 1.0
function P1789 Distance y
A+(T,I7) = [(1_ r)/V] eXp(w’ - VT)' (16) Figure 71.28

Evolution of the Stokes wave for the case in whjghic = 2. The solid
which is the fundamental term in the residue series expansidines denote the exact solution (15) and the broken lines denote the approxi-
of solution (15). Because of the tendency of the Stokes wave fepte solution (16). (a) Stokes amplitudey/at= 1 plotte'd as a function of
propagate out of the plasma, the Stokes amplitude at the rig(ﬁ/%; (b) Stokes amplitude at/l = 0.5 plotted as a function gl
boundary is reduced by a factor f = exp(v) whent = n.

The continuous function expyT) captures this essential fea- Summary

ture of the temporal wave evolution. Whean, the right part In summary, we studied the spatiotemporal evolution of
of the Stokes wave has experienced one less reflection than sideward SRS in the weak-coupling regime. In a uniform
left part. Consequently, the Stokes amplitude at the rightlasma the sideward convection of the Stokes wave inhibits the
boundary is larger than the Stokes amplitude at the left boundrowth of sideward SRS. In a plasma channel the partial
ary by a factor of 1/ The continuous function expf) cap-  reflection of Stokes light by the channel walls allows a spatial
tures this essential feature of the spatial wave evolution. If ongigenmode to form in the body of the laser pulse. After this
substitutes the ansatA+(T,l7) =a+(r)exp(vn) in Egs. (3) eigenmode has formed, it grows exponentially in time for the
and (5), withy= 0, one finds that the wave amplitude decayssubsequent duration of the pulse. The growth rate (12) depends
exponentially in time, with decay rate in agreement with directly on the reflectivity of the channel walls, which, in turn,
Eq. (16). Similarly, if one substitutes the ansaetzedepends directly on their height. Even weak reflections en-
A.(t,n)=a.(r)exp(vn) and N, =n,(r)exp(vn) inEgs. (3)  hance the growth of sideward SRS significantly. We also made
and (5), withy # 0, one finds that the wave amplitudes a preliminary analysis of sideward SRS in the strong-coupling
grow exponentiall%//2 in time, with growth rate regime.Although strong coupling changes the rate at which the
A= —v/2+(y2 + v2/4) , iIn agreement with Eq. (12). Thus, instability grows, it does not change the qualitative features of
solutions (11) are consistent with the formation of a spatiahstability growth described herein. In particular, the partial
eigenmode that grows in the presence of the pulse. reflection of Stokes light by channel walls allows a spatial
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eigenmode to form in the body of the pulse, and the ansaetz€

described after Eq. (16) can be used to determine the rate

which it grows. For channels created by the pulse, the height of
the channel walls depends directly on the pulse intensity. 9.

However, since pulses of high intensity evacuate the channel
completely, sideward SRS is most important for pulses of
moderate intensity. In future work we will apply the physical

insights gained in this study of sideward SRS to the study oft1:
near-forward and near-backward SRS. Reflections are stron;,

ger for these instabilities than for sideward SRS because the

Stokes waves approach the channel walls at grazing, rathés-

than normal, incidence. A significant amount of near-forward
SRS was observed in recent particle-in-cell simulations of

pulse propagation in an underdense plaga. 14.

15.
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