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In OMEGA’s pulse generation room (PGR) lab engineer Todd
Safford (left) and senior lab engineer Todd Blalock (right) exam-
ine one of the holographic gratings used to produce 2-D SSD
(smoothing by spectral dispersion). The 3.3-GHz electro-optic
modulator (seen through an IR mirror) is clearly visible on the
left. The 2-D SSD subsystem comprises eight gratings, two modu-
lators, and a variety of conventional optics spanning 80 ft of optical
path within the PGR.
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In Brief

This volume of the LLE Review, covering the period October–December 1996, includes a review of
2-D SSD as implemented on the OMEGA laser system. A summary of the detailed mathematical
formalism is shown, and the predicted level of uniformity achievable on OMEGA is given. The first
experimental results on uniformity using narrow-band 2-D SSD are compared to theoretical calculations.
Excellent agreement between experiment and theory is found, which gives confidence that broadband
2-D SSD with polarization wedges should achieve an rms nonuniformity in the 1%–2% level necessary
for cryogenic implosion experiments.

Other highlights of research presented in this issue are

• A method for measuring the areal density ρ∆r of the compressed shell based on the observation of
absorption lines from a titanium-doped layer. The method is tested using a simulated spectrum from
a one-dimensional LILAC simulation. The predicted peak ρ∆r of the compressed shell was within
17% of the value calculated directly from LILAC.

• A description of modeling the temporal-pulse-shape dynamics of the regenerative amplifier. The laser
rate equations are presented along with a discussion of the regen dynamics. Excellent agreement is
found between the model’s predicted output and the experimentally observed output. It is now possible
to model the entire OMEGA laser system, enabling on-target pulse shapes to be specified.

• A detailed analysis of the relativistic pondermotive force. A guiding center model is postulated, which
is compared to numerical simulation of the actual particle motion. The formula is also verified
analytically using the method of multiple scales. Work continues on this formalism to study the effects
of the pondermotive force on laser-plasma interactions.

• A description of an electro-optic sampling system capable of imaging the voltage distribution over a
rectangular region. The system is comparable to an ultrafast sampling oscilloscope with more than
180,000 channels.

• Methods to measure the fuel compression using nuclear diagnostics. The three ρR diagnostics being
developed for OMEGA are reviewed. A discussion of future developments is presented.
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The ultimate goal of the LLE uniformity program is to reduce
the rms laser-irradiation nonuniformity to the 1%–2% level,
which is required for cryogenic implosion experiments on
OMEGA. The combination of distributed phase plates
(DPP’s), two-dimensional (2-D) smoothing by spectral disper-
sion (SSD), polarization wedges, and beam overlap should be
sufficient to reach this goal. We present here a discussion of the
mathematical formalism of 2-D SSD with numerical calcula-
tions illustrating the levels of uniformity that can be achieved
on OMEGA. The initial implementation of 2-D SSD is de-
scribed, and the initial experimental results for uniformity are
compared with theory.

2-D SSD Concept
The level of uniformity that can be achieved with SSD is

determined by two factors: bandwidth and spectral dispersion.
The amount of bandwidth determines the rate of smoothing,
and the amount of spectral dispersion determines the maxi-
mum reduction in nonuniformity that can be achieved (as well
as the longest spatial wavelength of nonuniformity that can be
smoothed). Frequency-tripled glass lasers place constraints on
both bandwidth and spectral dispersion. Current techniques for

Two-Dimensional SSD on OMEGA

the high-efficiency frequency tripling of laser light limit the
(full-width) bandwidth to 3 Å to 4 Å in the IR for OMEGA.
Spatial-filter pinholes in the laser chain limit the spectral
spread of the beam to five to ten times the beam’s IR diffraction
limit. With these constraints, the levels of uniformity required
for OMEGA experiments can be achieved using SSD.

The starting point for a description of the uniformity that
can be achieved by 2-D SSD is the speckle pattern produced by
a phase plate. An example is shown in Fig. 69.1(a). It is
characterized by a smooth, well-defined intensity envelope on
target. However, superposed on the envelope is highly modu-
lated intensity structure (known as speckle), which is produced
by interference between light that has passed through different
portions of the phase plate. SSD smoothes this speckle struc-
ture in time by progressing through a sequence of many copies
of this speckle pattern, each shifted in space, so that peaks of
some fill in the valleys of others at different times. When
averaged in time, this effect is qualitatively similar to whole-
beam deflection: 1-D SSD has the effect of sweeping the beam
in only one direction, and 2-D SSD is similar to sweeping the
beam in two dimensions.
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Figure 69.1
The effect of overlapping a large number of statistically different speckle patterns. For a single pattern the rms nonuniformity σrms = 100%. For N patterns,
the rms nonuniformity is reduced by 1 N .
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The reduction in rms nonuniformity is statistical in nature.
Patterns shifted by more than about 1/2 of a speckle width act
as entirely different random speckle patterns. The overlap of N
random speckle patterns reduces the rms nonuniformity σrms
by 1 N . Examples in Figs. 69.1(b) and 69.1(c) show how
100 and 1,000 overlapping speckle patterns reduce the phase
plate σrms of 100% to values of 10% and 3%, respectively.
OMEGA will require 2000 to 10,000 of such overlapping
patterns, produced as follows: 2-D SSD will provide ~500 of
the speckle patterns (for a 1-ns smoothing time); the polariza-
tion shifter will provide an additional factor of 2; and
multiple-beam overlap will provide another factor of ~4, for a
resulting nonuniformity of 1%–2%.

SSD generates these shifted speckle patterns in a two-step
process.1 The beam is passed through an electro-optic modu-
lator, which imposes a small spread of frequencies (bandwidth)
upon the laser light. The bandwidth is then spectrally dispersed
by means of diffraction gratings. For 1-D SSD, one modulator
is used. For 2-D SSD, two modulators (of different frequen-
cies) are used, with diffraction gratings oriented such that each
bandwidth is dispersed in a perpendicular direction. Because
of the dispersion, each spectral component focuses onto the
target in a slightly different position, producing the required
shifted speckle patterns (Fig. 69.2).
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Figure 69.2
Schematic illustrating the use of spectral dispersion to generate overlapping
speckle patterns. The different spectral modes are spatially shifted in the
target plane. Speckle patterns that are shifted by more than 1/2 of a speckle
size are statistically independent.

The spectral dispersion does not reduce the speckle fluctua-
tions instantaneously. It creates an entirely different speckle
pattern, but one that changes in time. Interference between the
electric fields from different sections of the beam will fluctuate
in time because of their different frequencies, and the time-
averaged interference approaches zero at a rate inversely
proportional to the difference in frequency. As the contribu-
tions from interference become small, the time-averaged

uniformity “smoothes” to the result expected from super-
posing shifted intensity profiles, each corresponding to a
different frequency.

The time-averaged uniformity approaches an asymptotic
level that is determined by the number of statistically indepen-
dent speckle patterns (which is generally smaller than the
number of spectral components with different frequencies).
This depends on the ratio between the maximum spatial shift
(Smax) that can be produced by the laser and the smallest shift
(Smin) that will produce statistical smoothing. The maximum
spatial shift Smax is defined as the full-width distance in the
target plane that rays in the laser beam are deflected by SSD
dispersion. The smallest shift Smin is 1/2 of a speckle size and
is given by

S F Dmin ,= λ (1)

where F is the focal length, λ is the UV wavelength, and D is
the diameter of the focus lens. The maximum shift Smax is
determined by the maximum angular spread of the light that
can propagate through the spatial-filter pinholes of the laser
(Fig. 69.3). This can be conveniently expressed as a multiple s
of the whole beam diffraction limit (pinhole sizes are often
expressed in terms of this parameter). Thus,

S s F Dmax . .= ⋅ ( )2 4 λ (2)

Currently, OMEGA pinholes can accommodate s = 15, while
s = 30 is planned for the future. (Note: In this article s is quoted
in terms of UV wavelength; if expressed in terms of the IR
wavelength, s should be decreased by a factor of 3.) In terms of
these parameters, the number of statistically independent
speckle patterns (Nstat) is

N S S sstat = ( ) = ( )max min . ,
2 22 4 (3)

where the ratio is squared because 2-D SSD allows spectral
shifting in two directions. (This estimate for Nstat is somewhat
simplified because it assumes that all 2-D SSD modes have
different frequencies and are therefore independent; more
accurate calculations are given in the next section.) The current
and future values of Nstat are 1300 and 5000 for OMEGA,
which, by itself, should reduce the rms speckle fluctuation to
3% and 1.5%, respectively, in the asymptotic limit. For 1-D
SSD, Nstat = 2.4 s, with the asymptotic nonuniformity about a
factor of 5 larger.
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For the current OMEGA pinhole size (s = 15), Smax = 76 µm;
thus, the bandwidth and grating dispersion are chosen such that
rays from each phase-plate element are deflected ±38 µm
during an SSD modulation cycle. This is small in comparison
with a typical target diameter (~1 mm); the performance of
SSD is thus limited not by the finite target size but by the
selection of pinholes in the laser system.

In addition to the asymptotic level of uniformity, the rate of
smoothing is of crucial importance. Smoothing must occur
before the target can significantly respond to the laser
nonuniformity. A rough estimate for the rate of smoothing
provided by SSD can be obtained from the following argu-
ment. The rms nonuniformity, averaged over time T, will
decrease with the number of noninterfering spectral compo-
nents NT as 1 NT . (The time-averaged nonuniformity will
continue to decrease until NT = Nstat, and then it will asymp-
tote.) The smallest frequency difference δν for which
interference is negligible is roughly δν = 1 T . For a bandwidth
∆ν, one has N TT = =∆ ∆ν δν ν . Thus, the rms nonuniformity
decreases as 1 ∆νT . As an example, with ∆ν = 300 GHz
(equivalent to an IR bandwidth of 3 Å) and T = 1 ns, one finds
NT ≈ 300. This value of NT is less than Nstat for a spectral
separation of 15 times diffraction limit, so that smoothing will
continue beyond 1 ns (but such large smoothing times might be
too long to affect target performance).

This rate of smoothing is expected to be fast enough to
perform the high-compression experiments planned for
OMEGA. When combined with polarization shifters and beam
overlap, the resulting nonuniformity will be in the range of 1%
to 2% with a smoothing time of ~500 ps. Higher levels of
uniformity could be achieved with the development of new
technologies for tripling larger bandwidths. New tripling crys-
tals with a larger bandwidth acceptance are under investigation,

as are improved tripling configurations using existing materi-
als. One option under consideration is to vary the bandwidth in
time. At early times, when the intensity is low and high
irradiation uniformity is critical, the bandwidth would be large.
At these intensities the bandwidth acceptance of the tripling
crystals is larger, thus maintaining efficiency. Near the peak of
the pulse where high tripling efficiency is crucial, but where
laser uniformity can be relaxed because of the smoothing
characteristics of the plasma atmosphere that has formed
around the target, the bandwidth can be reduced.

2-D SSD Formalism and Results
The principal components of 2-D SSD are shown schemati-

cally in Fig. 69.4. With this configuration the bandwidth
imposed by the two modulators will be dispersed in two
perpendicular directions.

The effect of this configuration on the laser’s electric field
can be determined approximately from the following treat-
ment. The electric field of the laser entering the first diffraction
grating can be written as

E t E t ei t( ) = ( )0
ω , (4)

where the spatial dependence has been suppressed, and the
pulse-shape dependence is contained in E0(t). The first grating
in Fig. 69.4 will introduce a time shear across the beam in the
x direction, which is equivalent to spectral dispersion. (The
directions of dispersion will be referred to as x or y and are
perpendicular to the direction of propagation. The change in
propagation direction produced by each grating is not shown in
Fig. 69.4 and is not relevant to the present discussion.) With the
time shear, the electric field becomes

E t x E t x ei t x
1 0, ,( ) = −( ) −( )β ω β (5)

where β is related to the grating dispersion ∆ ∆θ λ( ) by

β π
ω

θ
λ

= 





2 ∆
∆

. (6)

The quantity Dβ (where D is the beam diameter) remains
invariant throughout the laser chain as the beam diameter
changes size; its value is the time delay across the beam. For
parameters at the end of the IR portion of the laser (∆θ/∆λ =
31 µrad/Å, D ≈ 30 cm, ω ≈ 1.8 × 1015 s−1), the time delay Dβ
is about 300 ps.
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Figure 69.3
Schematic illustrating the limitation imposed by the spatial-filter pinholes on
the amount of spectral dispersion that can propagate through the laser chain.
Since the minimum separation between modes in the target plane is 1/2 the
speckle size, the pinholes provide an upper limit on the number of modes
available for smoothing.
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The first electro-optic modulator introduces sinusoidal
phase-modulated bandwidth to E1, with amplitude δ1 and
angular frequency ω1. The resulting electric field is

E t x E t x ei t x t
2 0

1 1, .sin( ) = −( ) −( )+ ( )[ ]β ω β δ ω (7)

The second grating reverses the time shear of the first and
disperses the bandwidth in the x direction:

E t x E t x x3 2, , .( ) = +( )β (8)

The third grating introduces a time shear in the y direction,
which adds spectral dispersion in that direction. The same time
shear, given by β, is used in both x and y directions, although
this is not a requirement:

E t x y E t y x4 3, , , .( ) = −( )β (9)

Gratings 2 and 3 can be replaced by a single grating oriented at
45° to the gratings shown. The second electro-optic modulator
introduces additional bandwidth with parameters δ2 and ω2.
At this point the electric field is

E t x y E t y i t y

t x y t

5 0

1 1 2 2

, , exp

sin sin .

( ) = −( ) −( )[
+ + −( ) + ( )]

⋅β ω β

δ ω β β δ ω (10)

(There can be an arbitrary phase difference between the two
modulators, but this does not affect uniformity on target and
has not been included here.) Finally, the fourth grating reverses
the effect that the third grating had on the beam due to the
bandwidth imposed by the first modulator, and introduces y
dispersion (and a time shear) to the bandwidth from the second
modulator. The resulting electric field from this configuration
has the bandwidth from the first modulator dispersed only in
the x direction, the bandwidth from the second modulator
dispersed only in the y direction, and no time shear across the
beam:

E E t i t t x

t y

= ( ) + +( )[
+ +( )]

⋅0 1 1

2 2

exp sin

sin .

ω δ ω β

δ ω β (11)

This spectrally dispersed light propagates through the laser
chain, through the frequency-tripling crystals and phase plates,
and through the focus lenses onto the target. For the band-
widths considered here, the main effect of frequency tripling is
that the modulation amplitudes δ1 and δ2 are each tripled, as is
the laser angular frequency ω. Frequencies at the extremes of
the bandwidth will triple less efficiently than those near the
center. For current frequency-tripling crystals, the difference
in efficiency for bandwidths below ~4 Å does not significantly
effect the uniformity.

Figure 69.4
Schematic of 2-D SSD, illustrating how the bandwidths from the two modulators are dispersed in perpendicular directions.
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The electric field on target (in the focal plane) is

E E t e J J

m q n p e

e

F
i t

mn
m n

i m n t

KL

i m q L n p K KL

= ( ) ( ) ( )

× +( ) +( ) ×

×

∑

⋅

∑

+( )

− +( ) + +( ) +[ ]

0
3

1 2

1 2

2 2

3 3

1 2

1 2

ω

ω ω

γ γ φ

δ δ

γ γsin sin

.

c c

(12)

This expression includes the effect of the DPP, frequency
tripling, and spectral dispersion. Here the notation of Ref. 1
has been used with a generalization to two-dimensional disper-
sion. For simplicity, the results are written in terms of a
two-level phase plate rather than the more general DPP,2 which
is actually used on OMEGA. The main effect of the more
general phase plate is to replace the “sinc” envelope shape by
a more general function, but the speckle statistics are very
similar. The variables are defined as follows: p and q are
dimensionless variables related to y and x by the factor
k F3 2∆ , where k3 is the wave number of the frequency-tripled
fundamental, ∆ is the distance between phase-plate elements,
F is the focal length, and γ ω β1 2 1 2 2, ,= ∆ . The Bessel func-
tions Jm and Jn are the amplitudes from a Fourier decomposition
of the sinusoidal phase modulation. Formally the m-n sum
extends to ±∞, but the contributions from m > 3 1δ  and

n > 3 2δ  are very small. Thus, to a good approximation, the
largest spectral modes of interest are given by m M= ≡ 3 1δ
and n N= ≡ 3 2δ . The K-L sum is the factor that describes
the phase-plate speckle. The sum is over all phase-plate ele-
ments, each having a phase φKL, which is either 0 or π. Note
that each spectral component (m,n) has exactly the same
speckle structure but is shifted by mγ1 in q and by nγ2 in p.

These variables have the following physical significance.
The phase-plate element size ∆ is generally chosen so that
the distance between the zeros of the sinc function is slightly
larger than the largest target that will be irradiated (to assure
good uniformity). Thus, p, q = π is characteristic of the target
radius. The total spectrally induced spreads in the two direc-
tions, as fractions of the target diameter, are approximately
Mγ π1  and Nγ π2 . The total bandwidths in the two direc-
tions are ∆ν ω π1 1= M  and ∆ν ω π2 2= M . The number of
times that the phase modulation repeats across the beam is
γ π1 2, maxK , where Kmax is the number of phase-plate ele-
ments in one direction.

The laser intensity I in the focal plane is given by the square
of EF :

I I t J J J J

e

m q m q

n p n p

e

mm
nn

m m n n

i m n m n t

KK
LL

i L

= ( ) ( ) ( ) ( ) ( )

× +( ) ′ +( )
× +( ) ′ +( )
×

′
′

′ ′

+ − ′ − ′( )

′
′

′−

∑

∑

⋅

0 1 1 2 2

2

3 3 3 3

1 2 1 2

δ δ δ δ

γ γ

γ γ

ω ω ω ω

sin sin

sin sin

c c

c c

LL q i K K p

i m L mL n K nK ie K L KL

( ) + ′−( )

′ ′− + ′ ′−( )+ −( )× { }′ ′

2

2γ φ φ . (13)

The final summation has been written in the form of a Fourier
decomposition of the speckle nonuniformity with the term in
brackets being the Fourier coefficients.

The time-averaged uniformity at time t in the focal plane is

I t
T

I t dt
T t T

t T( ) = ′( ) ′−
+

∫
1

2
2 (14)

for an averaging time T. To examine the smoothing effect of
2-D SSD, it is instructive to evaluate the asymptotic limit of

I T  as T → ∞ . To simplify the result, consider the special
case for which (1) I0(t) is constant; (2) the spectral shifts are
sufficiently small that the sinc envelope is not modified; and
(3) the modulation frequencies are incommensurate, i.e.,
m nω ω1 2≠  for all integers m and n. The resulting asymptotic
uniformity can be written in the following form:

  

I I p q e C R
k

i kp q
k k∞

≠

+( )= ( ) +








⋅ ∑ ⋅env , ,1

0

2 2

l

l
l l (15)

where Ienv is the diffraction-limited phase-plate envelope, C
is the spatial autocorrelation function for the phase plate, R is
the reduction in nonuniformity produced by SSD, and the
summation is over the distance between phase-plate elements
(i.e., k K K= ′ −  and   l = ′ −L L ). These terms are defined as
follows:

I I p q Nenv c c= ( ) ( )0
2 2 2sin sin , (16)

where N2 is the number of phase-plate elements,

  
C ek

KL

i K k L KL
l

l= ∑ + + −( )φ φ, , (17)
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and

  
R J J ek

mn
m n

i m nk
l

l= ( ) ( )∑ +( )2
1

2
2

2 23 3 1 2δ δ γ γ . (18)

Using the Bessel function identity

  n
n n

in iJ J e J w e∑ ( ) ( ) = ( )+3 3 2δ δν
γ

ν
νθl , (19)

where w = 6δ γsin l  and sin sinθ δ γ= ( )3 l w , the SSD re-
duction factor becomes

  R J J kkl l= ( ) ( )⋅0 1 1 0 2 26 6δ γ δ γsin sin . (20)

In the form of Eq. (15), the nonuniformity structure has been
Fourier decomposed in terms of the variables p and q, with the
difference between phase-plate elements k and l acting as
dimensionless wave numbers. The rms fluctuation is deter-
mined by the square of the Fourier coefficients:

  

σ rms
k

k kC R=








∑ ⋅

l
l l

2
1 2

. (21)

The phase-plate result (without SSD) is recovered for Rkl = 1
(for all k and l), in which case the rms nonuniformity is 100%.

The SSD reduction factor depends on the spatial wave-
length of the nonuniformity through k and l: For   γ δ1 1

1
6l < ( )−

and   γ δ2 2
1

6l < ( )−  the factor Rkl is approximately 1. When
either k or l is small, the factor reduces to the 1-D SSD result.
This occurs when the wave vector for the nonuniformity points
toward one of the directions of dispersion. Maximum smooth-
ing from 2-D SSD occurs when both k and l are large. Fig-

ure 69.5 shows the reduction factor   Rkl  using the current
OMEGA values (δ1 = 5.1, δ2 = 4.6) for the cases when one
wave number is kept small (l = 0) and for the case when the
wave vector is at 45° to the direction of dispersion (l = k). The
improved smoothing in the second case, corresponding to two-
dimensional smoothing of the nonuniformity in both directions,
is apparent.

The condition that there is no significant smoothing for

  6 11 1δ γ l <  has a simple physical interpretation. The factor
6 1 1δ γ  is the total spectrally induced shift Smax in the target
plane in units of q. The parameter l is related to the wavelength
of nonuniformity ∆λ by   ∆λ π= l  (again in units of q). Thus,
the largest wavelength of nonuniformity that will be smoothed
by SSD is approximately πSmax. In other words, the spectral
shift must be a significant portion of the nonuniformity wave-
length for smoothing to occur.

The amount that the speckle pattern is shifted can be
doubled (in one direction) by means of a polarization shifter.3,4

This is illustrated in Fig. 69.6 for the shifter currently under
investigation at LLE, a birefringent wedge of KDP placed
after the frequency-tripling crystals. The birefringence of
KDP separates the laser beam into two orthogonal polariza-
tions, which are deflected by the wedge through slightly
different angles. (Alternatively, a liquid-crystal wedge could
be used. Depending on the type of liquid crystal, the orthog-
onal polarizations could be linear or circular.) The two speckle
patterns produced on target are spatially displaced, thus dou-
bling the number of independent speckle patterns. The most
effective way to use this technique is to disperse the polariza-
tion over a distance larger than the spectral dispersion pro-
duced by SSD. In this way, the polarization shift smoothes out
modes of nonuniformity that are not smoothed by SSD, and
overlap between the two techniques is avoided.5 The reduction
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Figure 69.6
Principle of the (birefringent) polarization wedge. The laser beam is split equally into two orthogonal polarizations (“o” and “e”), which are deflected by the
wedge through slightly different angles. This results in two spatially displaced speckle patterns in the target plane with orthogonal polarizations, which add in
intensity rather than electric field, providing an instantaneous reduction of 1 2  in the rms nonuniformity.
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Figure 69.7
Reduction in rms nonuniformity as a function of smoothing time for multiple
beam overlap on a spherical target, using the 60-beam OMEGA geometry.
Spherical harmonic modes up to l = 500 have been considered with no
additional smoothing assumed in the plasma atmosphere around the target.
The lower curve corresponds to a higher bandwidth in one direction and the
inclusion of polarization shifters.

in nonuniformity resulting from the polarization shifter is
instantaneous because there is no interference between the
two polarizations.

The predicted improvement in uniformity produced by 2-D
SSD on OMEGA is shown in Fig. 69.7 as a function of the
smoothing time. The results are for multiple overlapping
beams on a spherical target and thus include the smoothing
effect of overlapping beams. Two cases are presented. One
shows the results for the current implementation of 2-D SSD in
which 1.5 Å of bandwidth is dispersed in each direction. The
second case shows the result of doubling the bandwidth in one
direction and adding polarization dispersion in the second.
This case achieves the uniformity goal of OMEGA, namely
reaching the 1%–2% rms level within a smoothing time of less
than 500 ps.

Implementation of 2-D SSD
2-D SSD was implemented on OMEGA in January 1996.

An aggressive optical design program showed that 2-D SSD
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could be implemented over roughly the same time interval that
was originally planned for 1-D SSD. However, it was impor-
tant to adopt a conservative strategy with regard to bandwidth
during the time that the operating characteristics of the new
laser and SSD were being studied, because spectrally dis-
persed bandwidth can introduce intensity fluctuations that can
damage laser optical components. As such, the initial imple-
mentation of 2-D SSD used bandwidths of only 1.5 Å and
0.75 Å. The initial results presented in this section were gen-
erated with these bandwidths. The bandwidth has recently
been increased to 1.5 Å in each direction. To accommodate the
increased dispersion of the beam, it has been necessary to
enlarge one spatial-filter pinhole in the driver and to enlarge the
second SSD modulator crystal. Future plans call for an in-
crease in pinhole diameters later in the laser chain to allow the
propagation of up to 3 Å of bandwidth.

A far-field image of the beam, after the final set of gratings,
is shown in Fig. 69.8. Although the individual spectral compo-
nents can not be seen in this figure, the two-dimensional
dispersion is clearly evident. The extremes of the spectrum are
the most intense portions for sinusoidal phase modulation.
This is seen in the corners of the figure. The two directions of
dispersion are not exactly orthogonal due to a 6° misalignment
of the periscope that takes the beam out of the pulse generation
room (PGR), but this has no effect on the irradiation uniformity
on target. The amount of dispersion in each direction is propor-
tional to the bandwidth from each modulator.

Images of the final beam profile,6 in an equivalent target
plane (ETP), are shown in Fig. 69.9. These images are for a
single beam profile and therefore take no account of the
additional smoothing achieved by beam overlap. The first

image [Fig. 69.9(a)] shows the frequency-tripled beam without
a phase plate or SSD. The intensity nonuniformity is the result
of phase aberrations that have accumulated throughout the
laser chain. Figure 69.9(b) shows the improvement produced
by a phase plate. A well-defined intensity envelope has been
established, but superposed on the envelope is highly modu-
lated speckle. Figure 69.9(c) shows smoothing of the speckle
by 1-D SSD, for which the bandwidth is turned on in one
modulator and off in the other. Both combinations are shown.
The “stripes” in the images show the direction of spectral
dispersion. Nonuniformity perpendicular to the dispersion is
not smoothed. Finally, the last image [Fig. 69.9(d)] shows the
improved smoothing produced by two-dimensional disper-
sion. Note that the “stripes” have now been eliminated.

These images were time integrated over the laser pulse. The
uniformity achieved is characteristic of an SSD smoothing
time roughly equal to the pulse width, which was ~1 ns for this
experiment. The rms fluctuations of the intensity around smooth
envelopes are listed in Table 69.I, which gives both the mea-
sured and theoretically predicted values. A large part of the
improved uniformity for 2-D SSD compared with 1-D SSD (a
factor of ~2) is related to the smoothing duration: 1-D SSD
reaches an asymptotic level of uniformity after ~300 ps; 2-D
SSD continues to smooth throughout the entire time of the
pulse (1 ns). There is an increased bandwidth for 2-D SSD (due
to contributions from both modulators), but this has a much
smaller effect on the improved uniformity than the increased
smoothing duration, for this example.

Very recently a prototype KDP polarization wedge has been
tested on OMEGA. One-dimensional lineouts through equiva-
lent-target-plane (ETP) images (Fig. 69.10) show that the
predicted 2  uniformity improvement is indeed obtained.

G3991 1.5 Å

0.9 Å

Figure 69.8
A far-field image of the beam (after the final diffraction gratings) showing
that the two-dimensional dispersion of the beam is proportional to the
bandwidth applied by each modulator.

Table 69.I: rms nonuniformity for the single-beam images in
Fig. 69.9, compared with the theoretically predicted
values (when averaged over the 1-ns pulse).

Image Bandwidth
(Å)

Measured rms Calculated rms

(b) 0 0.96 0.98

(c) 0.75, 0 0.27 0.28

(c) 0, 1.5 0.24 0.21

(d) 0.75, 1.5 0.12 0.11
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Figure 69.9
Equivalent-target-plane images, integrated over the ~1-ns pulse width, of a single OMEGA beam with four levels of smoothing: (a) unsmoothed, frequency-
tripled; (b) phase plate, no bandwidth; (c) bandwidth in only one modulator; (d) bandwidth in both modulators.
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Figure 69.10
One-dimensional lineouts of the ETP images on OMEGA produced (a) without a polarization wedge and (b) with a polarization wedge. The measured rms
nonuniformities of σrms = 98% and 68%, respectively, demonstrate the predicted 2  uniformity improvement made possible by the wedge.
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Absorption lines due to 1s–2p transitions in titanium ions are
predicted to be observed in the implosion of titanium-doped
shells. The measured absorption of these lines can be used to
determine the peak areal density ρ∆r of the doped layer and
hence of the total compressed shell. The absorption lines are
studied by solving the radiation transport equation using opac-
ity tables and hydrodynamic simulations. The absorption is a
function not only of ρ∆r but also of the density and temperature
of the absorbing layer. However, it is shown that the areal
density can be estimated with reasonable accuracy by using
the measured intensity of absorption and its distribution over
the various absorption lines. The considerations affecting the
choice of doping parameters are discussed, as well as the
effect of integrating the measured spectrum over time and
target volume.

Recently published work1 showed that a titanium-doped
layer within a polymer shell of a laser-imploded target can
yield information on core-shell mixing. We show here that the
absorption lines predicted to be produced by such a doping
provide a signature of shell areal density (ρ∆r) at peak com-
pression. This areal density is an important parameter
characterizing the implosion performance, which in turn is
determined by target instability and mixing.

In the work on mixing diagnostics,1 the doped-layer loca-
tion within the shell was removed from the fuel-shell interface
so that, in the absence of mixing, only titanium absorption lines
would be observed, but mixing could cause titanium material
to move into inner target regions and emit titanium lines. Even
for the assumed level of mixing, the absorption lines were
essentially unchanged from the no-mixing case. Thus, such a
doped layer can provide information on the overall ρ∆r of the
compressed (or overdense) shell, even if its inner part under-
goes mixing. The doped layer is placed in the target far from the
interface but still close enough not to be ablated away.

Measurement of the absorption spectrum yields the areal
density of only the doped layer.2 This by itself is of interest
because the comparison of measured and predicted ρ∆r for

Areal Density Measurement of Laser Targets Using
Absorption Lines

the doped layer is a measure of target performance. Addition-
ally, the total areal density of the compressed shell can be
deduced if the thickness of target layer that is ablated away is
measured (e.g., by charge collectors).

The absorption lines are studied by solving the radiation
transport equation using OPLIB3 opacity tables and one-
dimensional LILAC4 hydrodynamic simulations. The
absorption is a function not only of ρ∆r but also of the density
and temperature of the absorbing layer. However, it is shown
that the areal density can be estimated with reasonable accu-
racy by using the measured intensity of absorption and its
distribution over the various absorption lines. The initial ρ∆r
of the titanium doping must be small enough, or the effect of
local emission in the absorption region will lead to underesti-
mating the ρ∆r. It is further shown that integrating the measured
spectrum over the target volume causes only a small error,
while integrating over time causes the ρ∆r to be underesti-
mated by about a factor of 2.

Modeling a Test Case
We calculate the expected x-ray spectrum of a particular

simulated target implosion on the OMEGA laser. For this test
case, LILAC results were used for the expected temperature (T)
and density (ρ) profiles, and a post-processor5 code was used
to calculate the emission and radiation transport through the
target. To simulate the emergent absorption and emission
spectrum, multigroup opacity tables were generated using the
OPLIB opacity library.3

The target is a polymer shell of 940-µm diam and 30-µm
thickness, filled with 80 atm DT gas. A layer doped with 1%
titanium (by atom number) is embedded in a CH polymer shell;
the doped layer is placed 2.4 µm from the interface and its
thickness is varied. As explained in earlier work,1 such a doped
layer shows significant absorption at the wavelengths of tita-
nium lines, while showing little effect on overall target
behavior. The laser pulse is trapezoidal, rising linearly over a
0.1-ns period to 13.5 TW, then remaining constant for 2.2 ns,
before dropping linearly over a 0.1-ns period. LILAC hydrody-
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namic simulations show1 that the shell compresses to a mean
radius of ~50 µm and thickness of ~30 µm, with a density in
the range of ~10 to 50 g/cm3, corresponding to a ρ∆r value of
~90 mg/cm2. The electron temperature in the shell ranges from
~800 (at the shell-fuel interface) to ~80 eV (at the peak of the
shell density); the line absorption occurs within the colder,
outer part of this compressed shell. The profiles at maximum
compression are shown in Fig. 69.11.
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Figure 69.11
The density and temperature profiles predicted by the LILAC hydrodynamics
simulation code at peak compression.

Figure 69.12 shows examples of the predicted spectrum at
two instances during the implosion, showing titanium absorp-
tion lines. The time 2.9 ns corresponds to peak compression.
These lines correspond to transitions of the type 1s–2p in
titanium ions of an incomplete L shell: Ti+13 to Ti+20. The
designation Li in Fig. 69.12 stands for lithium-like titanium
ion, and likewise for the other designations. Each peak con-
tains several lines that are unresolved mostly because of
broadening due to the finite source size. For example, the peak
marked C (carbon-like) consists of 35 transitions of the type
1s22s22p2–1s2s22p3. On approaching peak compression, the
intensity of the continuum radiation is seen to rise sharply and
the absorption-line manifold is seen to shift to higher ioniza-
tion states. This shift, caused by the increase in shell temper-
ature as the shell becomes more compressed, is discussed
further below.

The absorption lines are formed when radiation emitted by
the compressed core traverses colder shell layers. By the
definition of the opacity k, the intensity within an absorption

line at an energy E is given by

I E I E k E dr( ) = ( ) − ( )[ ]∫0 exp ,ρ (1)

where I0 is the core-emitted intensity and k(E) is the opacity per
unit areal density. Equation (1) assumes that the local emission
within the absorption region is neglected; this point is dis-
cussed further below. From Eq. (1) it follows that the ρ∆r of
the absorbing layer can be deduced from the measured spec-
trum through the relationship ρ∆r I E I E k E= ( ) ( )[ ] ( )ln 0 .
However, k(E) depends also on the (unknown) temperature and
density in the absorption layer. Note that the density depen-
dence of the opacity is in addition to the explicit dependence of
the attenuation on ρ∆r [Eq. (1)]. Next we examine these
dependencies and show how Eq. (1) can be used to estimate the
ρ∆r of the absorbing layer, even without an exact knowledge
of the temperature and the density.

Areal Density Determination Using Absorption Lines
Figures 69.13 and 69.14 show examples from OPLIB3 of

the opacity spectrum for 1% titanium in CH, as a function of
temperature and density. As seen, 1%-titanium doping pro-
vides an ample contrast ratio between line absorption by
titanium ions and the nonresonant absorption by both titanium

Figure 69.12
The predicted spectrum emitted by the test case (1%-titanium-doped layer) at
two times during the implosion; E0 = 7 × 1015 keV/(keV ns Ω). The time
2.9 ns corresponds to peak compression. The designation Li stands for the
lithium-like titanium ion, and likewise for the other designations. The
emission is integrated over the target volume.
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and CH. As the temperature increases (Fig. 69.13), the absorp-
tion-line manifold shifts to higher photon energies, or higher
ionizations. The shift seen in Fig. 69.12 is similarly due to an
increase in shell temperature on approaching peak compres-
sion. On the other hand, Fig. 69.14 shows that for the same
temperature, a higher density causes the manifold to shift to
lower ionizations. This is because the three-body (or colli-
sional) recombination increases with increasing density faster
than the two-body collision processes. The three-body recom-
bination is important only at or near LTE (local thermodynamic
equilibrium),6 which is the atomic model used to generate the
OPLIB tables. However, it can be shown7 that for the ions and
temperatures under consideration, the LTE approximation for
the distribution of ion populations holds for densities (of the
mostly polymer material) higher than ~6 g/cm3; much higher
shell densities than this are predicted for the test case. From
Fig. 69.13 a doubling of the temperature leads to a 0.05-keV
shift in the peak absorption. A similar shift in peak absorption
requires, from Fig. 69.14, a factor-of-10 increase in density.
Thus the peak positions are more sensitive to changes in
temperature than in density. Figures 69.13 and 69.14 clearly
show that the absorption at any given photon energy depends
on both the temperature and the density; consequently, Eq. (1)
cannot be used in a simple way to derive ρ∆r. In addition it
should be noted that (1) changes in temperature and density
cause primarily an energy shift in the absorption lines and

(2) the total absorption-line manifold has only a weak depen-
dence on temperature and density. Thus we choose the integral

ln I E I E dE0 ( ) ( )[ ]∫  over the whole absorption-line manifold
as the experimental signature. We refer to the integral

ln∫ ( )I I dE0  as the area within the absorption lines [if film
density is proportional to ln(I), this indeed is the area under
the absorption lines on film]. From Eq. (1) we obtain

ln .I E I E dE r k E dE0 ( ) ( )[ ] = ( )∫ ∫ρ∆ (2)

The opacity integral on the right can be obtained from opacity
spectra such as those in Figs. 69.13 and 69.14. It turns out that
even after integrating the opacity over the absorption-line
manifold, the opacity still depends appreciably on temperature
and density. For example, the opacity varies from 35 to
85 cm2 keV/g when the temperature is varied from 0.3 to
10 keV and the density is varied from 1 to 50 g/cm3. However,
in addition to the integral over the spectrum we can also make
use of the measured distribution among the absorption peaks.
More specifically, the peak of strongest absorption provides an
additional signature that also depends on both temperature and
density and helps to narrow the range of opacity values.

To make use of this additional information, we calculated
the integrated opacity for temperatures in the range of 0.3 to
1.0 keV and densities in the range of 1 to 50 g/cm3. Fig-

Figure 69.13
The opacity of 1%-titanium-doped CH at a density of 3.2 g/cm3 (from
OPLIB3), showing a shift to higher photon energies (higher ionizations) with
increasing temperature. The absorption lines are due to 1s–2p transitions in
titanium ions with increasing number of L-shell vacancies.

Figure 69.14
The opacity of 1%-titanium-doped CH at a temperature of 300 eV,
showing a shift to lower photon energies (lower ionizations) with
increasing density.
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ure 69.15 shows the results, arranged according to the
strongest opacity peak (marked Li for cases where the lithium-
like peak is the strongest, etc.). The four charge states (C-like
to Li-like) cover the range likely to be encountered in target
implosions. Figure 69.15 shows that knowing the peak of
maximum absorption (without knowing the temperature or the
density) narrows down the range of integrated opacity from
±42% to within ±15%.

To apply Fig. 69.15 to an experimental result, we first note
the peak of maximum absorption in the spectrum. For example,
if the Be-like peak dominates, we obtain from Fig. 69.15 the
value 52 for the integrated opacity k E dE( )∫ , without having
to know the temperature or the density. Substituting this value
in Eq. (2) produces a relation between the ρ∆r of the doped
layer and the measured area within the absorption lines (the
integral on the left side of the equation). The error in determin-
ing ρ∆r based of Fig. 69.15 is ±15%; other sources of error
are discussed below.

Using the area under the absorption lines rather than the
intensity profiles obviates the need to know the line profiles
(e.g., due to Doppler and Stark effects). However, the measured
and calculated intensity profiles should actually be quite simi-
lar because the absorption profile for each ion specie is
comprised of many closely spaced components. In the experi-
ment these components are smeared by the source-size

broadening, whereas in the OPLIB3 calculations they are
smeared by the energy bin width, chosen to be similar to the
source-size broadening. The final absorption profile for each
ion specie is the envelope over these components and depends
mostly on their relative intensity and separation.

Application of the Method to a Simulated Implosion
To test the method of determining ρ∆r by the spectrum of

absorption lines we apply it to a simulated spectrum from the
implosion of the test case and compare the resulting ρ∆r to the
actual ρ∆r of the profiles used in the calculation of the spec-
trum. This procedure simulates the application of the method
to an experimentally observed spectrum.

Figure 69.16 shows two examples of the calculated emer-
gent spectrum for the test case. For very high opacities, the
attenuation in the emergent lines cannot be arbitrarily high
because local emission within the absorption region fills in the
absorption dips. Therefore, the doped layer must be suffi-
ciently thin, or the ρ∆r will be underestimated. Similarly, the
depth of the observed absorption lines is limited by the finite
dynamic range of the film (or other detector). To demonstrate
the effect of self-absorption, we show in Fig. 69.16 a compari-
son of the spectra emitted from two identical titanium-doped
targets except for the thickness of the doped layer, which was
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Area under the opacity-spectrum peaks, such as those in Figs. 69.13 and
69.14. For temperatures in the range of 300 to 1000 eV and densities in the
range of 1 to 50 g/cm3, the points are grouped according to the strongest
absorption peak in the opacity spectrum (Li stands for cases where the
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Comparison of the spectrum emitted from two identical 1%-titanium-doped
targets except for the thickness of the doped layer, which was 0.4 and 1.2 µm,
respectively. Both spectra refer to the time of peak compression and are
integrated over the target volume; E0 = 7 × 1015 keV/(keV ns Ω). The near
coincidence of the two spectra is caused by the local emission in the
absorption region.
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0.4 and 1.2µm, respectively. We refer to these two target
simulations as the “thin case” and the “thick case.” The sepa-
ration of the outer surface of the doped layer from the shell-fill
interface was 2.4 µm in both cases (the thick case’s inner
boundary was closer to the shell-fill interface than the thin
case’s). Both spectra refer to the time of peak compression and
are integrated over the target volume. The similarity of the two
spectra is clear evidence of local emission in the absorption
region. Thus, at the wavelengths of highest absorption, only
radiation emitted on the outer surface of the doped layer can
emerge, and its intensity is independent of the thickness of
the doped layer. On the other hand, for the weak absorption
peaks [where the attenuation factor ln I I0( )  is smaller than
~1] we would expect the absorption depths to be proportional
to the doped-layer thickness. The reason for the weaker
changes evident in Fig. 69.16 is that the thin doped layer
happens to sample the highest-absorbing part (higher ρ, lower
T) of the doped region. Thus, a too-thick doped layer gives rise
to difficulties due to both local emission and gradients in
plasma parameters.

We now apply the method of determining the areal density
to the two spectra in Fig. 69.16. The area ln I I dE0( )∫  in
Fig. 69.16 is equal to 0.17 keV for the thin case and 0.21 keV
for the thick case. The strongest absorption peak is at 4.65 keV
and corresponds to Be-like titanium. From Fig. 69.15 we use
the average integrated opacity for the Be-like titanium, which
has the value 52 cm2 keV/g (with an error of ±15%). Substi-
tuting these values into Eq. (2) we finally obtain ρ∆r =
3.2 mg/cm2 for the thin case and ρ∆r = 4.0 mg/cm2 for the
thick case. This is compared with LILAC’s ρ∆r values at peak
compression: ρ∆r = 3.1 mg/cm2 for the thin case and ρ∆r =
13.5 mg/cm2 for the thick case. Thus, the method works well
for the thin case but significantly underestimates the ρ∆r in
the thick case because of local emission within the absorp-
tion region.

To obtain accurate ρ∆R measurements from this technique
the target doping must be such that kρ∆r < 1, which can be
achieved in two ways: The choice of target doping can be
based on simulations, or one can start with high-ρ∆r doping
and repeat the experiment with successively lower doping
levels until the measured absorption is seen to decrease with
decreasing doping. The latter procedure is also desirable for
the following reason: if the achieved ρ∆r is smaller than
predicted, the absorption lines may not be observed at all.
Thus, starting with a thicker doped layer ensures the observa-
tion of absorption lines even in such a case. In the test case
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Figure 69.17
Comparison of simulated axial-view spectrum (per unit area) and space-
integrated spectrum from an imploded, 1%-titanium-doped target. I0 = 7 ×
1020 keV/(keV ns cm2 Ω); E0 = 7 × 1015 keV/(keV ns Ω). The ratio
between the two is essentially equal to the inverse of the cross section of the
emitting core.

studied here, a 0.4-µm-thick layer doped at 1% was shown to
be an appropriate final choice for doping.

The emergent spectrum from the simulated target has been
shown in earlier publications.1 However, that spectrum was
computed for a spatially and temporally resolved measurement
(axial view at peak compression). We show here the effect of
integrating the calculated emergent spectrum over space and
time. First, Fig. 69.17 shows a comparison of an axial-view
spectrum (per unit area) with the space-integrated spectrum.
The spectral intensity refers to the flux per unit area in units of
I0 = 7 × 1020 keV/(keV ns cm2 Ω), whereas the emission refers
to the flux from the whole target in units of E0 = 7 × 1015 keV/
(keV ns Ω). The ratio between the two curves is essentially
equal to the inverse of the cross section of the emitting core
(giving in Fig. 69.17 a core diameter of ~80 µm). The two
spectra have very similar shapes, and the spatially integrated
spectrum has an area ln I I dE0( )∫  that is only ~15% smaller
than that of the spatially resolved spectrum. This is not surpris-
ing since any ray from the core in the direction of observation
traverses essentially the same shell thickness.

Figure 69.18 shows a comparison between the emergent
spectrum at the time of peak compression (2.9 ns) and the time-
integrated spectrum; both are integrated over the target volume.
Note that the peak in absorption for the time-integrated spectra
is not as clear cut as the peak for the time-resolved spectra. As



AREAL DENSITY MEASUREMENT OF LASER TARGETS

16 LLE Review, Volume 69

the implosion progresses, the titanium dopant experiences an
increase in temperature and density, and consequently there is
a shift in the absorption peak with time. The time-integrated
measurement averages over all these peaks. The emission, as in
Fig. 69.17, is in units of E0 = 7 × 1015 keV/(keV ns Ω) and the
fluence is in units of F0 = 2.3 × 1015 keV/(keV Ω). The ratio
between the two curves is essentially equal to the inverse of the
core emission duration in nanoseconds (Fig. 69.18 gives a
duration of ~0.6 ns). The area ln I I dE0( )∫  for the time-
integrated spectrum is about half that of the peak-emission
spectrum and using it would result in an underestimate of the
ρ∆r by the same factor.

As mentioned earlier, the total ρ∆r of the compressed shell,
(ρ∆r)total, can be deduced from that of the doped layer,
(ρ∆r)doped, if the total ablated mass is measured (e.g., by
charge collectors). A simple geometrical consideration shows
that for a uniformly compressed shell the ratio

ρ ρ∆ ∆r r( ) ( )doped total

is proportional to its initial value through a proportionality
constant C, which depends on the spherical convergence and
the location of the doped layer within the shell; C is smaller
than, but close to 1. In the simulated test case the density of the
compressed shell was constant to within ±30%. For that case,
with an initial 30-µm-thick shell and a 0.4-µm-thick doped
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Figure 69.18
Comparison of simulated peak-compression and time-integrated spectra
from an imploded, 1%-titanium-doped target (both are integrated over the
target volume). E0 = 7 × 1015 keV/(keV ns Ω); F0 = 2.3 × 1015 keV/(keV Ω).
The ratio between the two curves is essentially equal to the inverse of the core
emission duration in nanoseconds.

layer (the thin case), we deduced above a ρ∆r for the doped
layer of 3.2 mg/cm2. The simulations by LILAC show that
16 µm of the shell thickness is unablated (this in an experiment
will be deduced from charge collectors), so the total shell areal
density at peak compression is estimated as ρ∆r = 3.2 ×
(16/0.4) = 128 mg/cm2. Here we assumed that the convergence
is unknown and used C = 1. This result compares with LILAC’s
value for peak compression of ρ∆r = 110 mg/cm2. If the
convergence is known (for example, from imaging), a better
value of C can be used and the discrepancy reduced.

It might be thought that a thicker layer doped at a lower
concentration could reduce the problem of relating the mea-
sured ρ∆r to that of the total shell. However, this is undesirable
because enlarging the doped layer results in averaging over the
steep temperature gradient in the shell. This introduces an
uncertainty in the choice of peak to be used in Fig. 69.15 and
thus an additional error in the derived areal density.

Conclusion
An effective method has been described for measuring the

areal density of the compressed (or overdense) shell of laser-
imploded targets, based on the observation of absorption lines
from a titanium-doped layer. Four factors have been shown to
affect the precision of such measurement:

(a) If the initial ρ∆r of the doped layer is too high, the prob-
lem of local emission in the absorption region will lead to
an underestimate of the ρ∆r at peak compression. To
address this problem, the experiment can be repeated
with progressively thinner doped layers (or lower doping
concentrations), until the absorption is seen to decrease
with decreasing ρ∆r of the initial doped layer. This pro-
cedure is also desirable to ensure the observation of
absorption lines even if the actual compression is smaller
than predicted.

(b) If the spectrum is not streaked in time, the ρ∆r will be
grossly underestimated (typically by a factor of 2).

(c) If the spectrum is not spatially resolved, the ρ∆r will
be slightly underestimated (typically by ~15%). Thus, it
is more important to resolve the spectrum in time than
in space.

(d) The total ablated mass must first be determined (for
example, by employing charge collectors) to be able to
relate the measured ρ∆r of the doped layer to the total
ρ∆r of the overdense shell.
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Advances in laser-fusion technology indicate that the temporal
profile of the laser pulse applied to laser-fusion targets is
important for improving the performance of these targets.1 The
OMEGA laser is a 60-beam laser-fusion system capable of
producing a total of 30 kJ of ultraviolet (351-nm) energy on
target, where the temporal profile of the optical pulse applied
to a laser-fusion target can be specified in advance. This is
accomplished by a pulse-shaping system that produces an
optical pulse with a specific temporal pulse shape at the
nanojoule energy level.2 This pulse seeds an actively stabi-
lized Nd:YLF regenerative amplifier3 (regen) followed by and
wavelength matched (1053 nm) to a series of Nd:glass ampli-
fiers. The beams are then frequency tripled to the third harmonic
using KDP nonlinear crystals. To achieve the desired on-target
optical pulse shape, the temporal dynamics of the entire
OMEGA laser system must be accurately modeled to deter-
mine the specific temporal profile of the seed pulse required
from the pulse-shaping system at the beginning of the laser.
The temporal profile of this low-energy seed pulse, when
amplified and frequency tripled by the laser system, will then
compensate for the temporal distortions caused by gain satura-
tion in the regen and amplifiers and by the tripling process, and
will produce the desired pulse shape on target.

To determine the required temporal profile of the optical
pulse at the beginning of the system, all sources of temporal
distortions in the system must be understood and compensated
for. The temporal distortion due to the frequency-tripling
process is modeled with a time-dependent simulation of the
appropriate nonlinear equations for this process.4 The tempo-
ral-pulse distortions in the system’s Nd:glass amplifiers are
easily modeled with our beam code RAINBOW. Modeling the
actively stabilized Nd:YLF regen at the beginning of the
system is the topic of this article. With the regen model
described here, OMEGA’s temporal dynamics can now be
completely modeled. Pulse distortions in the system can be
easily compensated for by proper choice of the seed temporal
profile determined from the overall model.

Modeling the Temporal-Pulse-Shape Dynamics of an
Actively Stabilized Regenerative Amplifier for OMEGA

Pulse-Shaping Applications

The gain of the OMEGA system from the pulse-shaping
modulator to the target is approximately 1014; a gain of 107 in
the actively stabilized regen is included in this overall gain.
Modeling the actively stabilized regen is complicated by many
factors. The regen must be treated as a multipass amplifier, the
last few passes of which experience significant gain saturation
in the Nd:YLF laser rod. The lifetime of the lower-laser-level
manifold in Nd:YLF has been measured to be 21 ns,5 and the
round-trip time in the cavity is 26 ns. A Frantz-Nodvik–type
solution6 for the gain in the Nd:YLF medium cannot account
for this finite lower-laser-level lifetime and, hence, is inappro-
priate; the rate equations must be used to describe the single-
pass gain in the Nd:YLF medium. Finally, the regen incorpo-
rates a feedback mechanism that measures the circulating
pulse energy each round-trip.3 When the circulating pulse
energy exceeds a threshold (~25 µJ), a feedback mechanism is
activated. The feedback mechanism introduces appropriate
losses into the cavity each round-trip in order to stabilize the
circulating pulse energy to a fixed but low-energy level. During
this prelase stabilization phase the regen is operating with a net
gain (round-trip gain/loss) approximately equal to unity and
establishes a constant and stable pulse-energy output from the
regen. After this prelase stabilization is achieved, the laser can
be Q-switched by eliminating the feedback losses from the
cavity. The regen will then emit a Q-switched envelope of
pulses. The pulse at the peak of the Q-switched envelope is
switched out and sent to the OMEGA amplifiers. This stabi-
lized regen produces pulses with a long-term shot-to-shot
energy stability of approximately 0.2%, despite the fluctua-
tions introduced by the flash-lamp pumping, and is insen-
sitive to injected-pulse energy variations of more than two
orders of magnitude.3

The regen is modeled by numerical integration of the rate
equations and careful consideration of the regen dynamics.
The regen model described here includes gain saturation in the
Nd:YLF laser rod, intracavity losses, lower-laser-level life-
times, and the active losses introduced by the stabilizer-feed-
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back circuit. Careful measurements of the input and output
shaped optical pulses from the regen have been made and will
be discussed. The calculations on this regen agree well with
the measured output of the regen and serve as a model for this
important OMEGA component. With this regen model, the
entire temporal-pulse-shaping dynamics of OMEGA can now
be modeled from the pulse-shaping system to the final on-
target pulse shape. This modeling provides us with the capability
to accurately produce any desired temporally shaped optical
pulse on target for laser-fusion experiments.

Rate Equations
OMEGA’s pulse-shaping system produces a shaped optical

pulse that is injected into the actively stabilized regenerative
amplifier. The output-pulse shape of the regen is determined by
gain saturation in the active medium and by the cavity dynam-
ics. The regen model consists of injecting a temporally shaped
pulse into the cavity and calculating the new shape after every
pass through the cavity. The effect on the pulse shape due to
each component is treated separately in the calculation. In this
section we discuss the temporal distortion due to a single pass
through the gain medium and in the next section incorporate
this into the calculation of the overall regen dynamics.

Gain saturation due to a single pass through a gain medium
is calculated by solving the laser rate equations7
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which describe the evolution of the cavity photon flux ϕ, the
atomic population N1 of the lower laser manifold, and the
atomic population N2 of the upper laser manifold. These rate
equations explicitly account for the lifetimes of these upper

and lower laser manifolds. In these equations c is the speed of
light in vacuum; n is the index of refraction of the gain medium;
σ is the stimulated emission cross section (1.2 × 10−19 cm2);
and τi,j is the relaxation time of the transition from manifold i
to manifold j (here, level 0 represents the ground state). The
upper laser manifold N2 consists of two sublevels labeled with
energies E2,n (n = 1,2), and the lower laser manifold N1 con-
sists of six sublevels labeled with energies E1,m (m = 1 to 6),
two of which are degenerate in energy (sublevels 2 and 3) as
shown in Fig. 69.19. The stimulated emission terms in the rate
equations [Eqs. (1)] (first terms on the right side in each
equation) involve transitions between the sublevels E21 and
E12 as shown in Fig. 69.19; hence, the thermal occupation fi Ni
of these laser-active sublevels is used in these terms. The
thermal occupation of these sublevels is calculated by

f N
e N

e

N
E kT

E kT

m

m
m

1 1
1

1

6 1
12

1

0 207= =
−

−

=

=
∑

. (2a)

and

f N
e N

e e
N

E kT

E kT E kT2 2
2

2
21

21 22
0 570=

+
=

−

− − . , (2b)

where Ei,j is the energy of level i sublevel j relative to the lowest
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energy level in the manifold, k is the Boltzman constant, and T
is the temperature (assumed to be room temperature).

The rate equations [Eqs. (1)] can be solved numerically. We
transform these equations along their characteristics in the
time-distance plane with the transformation equations

x z
ct

n
t

nz

c
→ + → −τ . (3)

If we use the chain rule and the substitution
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with cdt n dz dx= = 2 , we get the set of finite-difference
equations
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for the transformed rate equations. Here we have transformed
Eq. (1a) using the transformation equations [Eqs. (3)], and we
have left Eqs. (1b) and (1c) untransformed since the photon
flux evolves in both space and time, whereas the populations
evolve in time only. These equations can be solved numerically
given appropriate boundary conditions.

In the model, the photon flux is specified at the entrance
face of the laser rod and is given by the temporal profile of the
pulse entering the rod. The initial upper-laser-level population
is determined from measurements of the laser rod small-signal
gain, and for simplicity the initial lower-laser-level population
is assumed to be zero. With these boundary conditions,
Eqs. (5) can be numerically integrated to yield the photon flux
at any time and for any position in the laser rod. Of interest for
our calculations is the output-pulse shape specified at the

output face of the laser rod. These equations with these
boundary conditions, along with the regen dynamics discussed
below, have been solved numerically, and the results are
presented below.

Regenerative Amplifier Model
Modeling the regen consists of injecting a pulse with a given

pulse shape and energy into the regen and calculating the new
pulse shape and energy after each round-trip through the
cavity. A single round-trip through the regenerative amplifier
is depicted in Fig. 69.20. The pulse first experiences gain
through the laser rod followed by propagation to the output-
coupling mirror and back. The pulse then experiences gain
again followed by propagation to the end mirror and back.
Losses due to the output-coupling mirror and the feedback
stabilizer (discussed below) are included in the calculation.
During propagation of the pulse in the cavity, the upper- and
lower-laser-level manifolds are allowed to decay with their
respective lifetimes. This calculation for a single pass through
the cavity gives the output-pulse shape and energy, given the
input-pulse shape and energy for the pass. The output pulse for
each pass is used as the input pulse for the next pass through the
cavity, and the procedure is repeated for a given number of
round-trips through the cavity.

The loss due to the feedback stabilizer depends on several
factors. The cavity incorporates two Pockels cells, one of
which is feedback controlled. Specific voltages are applied to
all four electrodes of the two Pockels cells at specific times.3

During the beginning of the flash-lamp cycle, high losses are
introduced into the cavity to allow the gain to build up in the
rod. At the peak of the gain, a pulse is injected into the cavity
at time t1, and all losses are removed from the cavity (with the
exception of the static losses here assumed to be 55% in our
laser, which includes the 50% output coupler loss) allowing the
circulating-pulse energy to increase. The applied voltages after
time t1 are shown schematically in Fig. 69.21(a) (however, not
to scale). When the circulating-pulse energy reaches a thresh-
old value (adjusted to ~25 µJ), the feedback stabilizer is
activated. At this time (t2) a dc voltage Vdc is applied to one
electrode of the first Pockels cell, which introduces a dc loss
into the cavity. Simultaneously, a modulated feedback-con-
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Figure 69.20
The regen model calculates the pulse shape and
energy after a round-trip in the cavity, then
iterates for many round-trips. The calculation
includes the effects of gain saturation, propa-
gation, and static and feedback losses.
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trolled voltage V(t) is applied to an electrode of the feedback-
controlled Pockels cell, which introduces a feedback-controlled
modulated loss in the cavity. The function of the feedback-
controlled modulated loss is to stabilize the circulating pulse
energy to a specified constant low value. If the pulse energy
falls below (above) this energy, loss is removed (added) to
maintain the specified output-pulse energy. Specially designed
circuitry for this modulated feedback-controlled voltage3 elimi-
nates pulse-shape distortions caused by fast feedback-voltage
changes during pulse propagation through the Pockels cell, as
in the previous design.8 This ensures that pulse-shape distor-
tions in the regen are due mainly to gain saturation. Finally,
after the output-pulse energy is stabilized by the feedback
mechanism during this prelase phase, the laser is Q-switched,
at which time (t3) all feedback loss is removed and a Q-
switched pulse envelope is allowed to build up. (During this
time an adjustable low-level dc loss is left in the cavity to
control the final output-pulse energy; however, this loss is not
included in the model.) The measured output-pulse train enve-
lope from the regen is shown in Fig. 69.21(b).

The voltage applied to the feedback-controlled Pockels cell
during the prelase stabilization is modulated every round-trip
so that the Pockels cell transmission is given by

T
V t

V
= ( )





cos ,2
2

π
π

(6)

where V(t) is the instantaneous value of the modulated voltage
difference between the electrodes and Vπ is the quarter-wave
voltage of the Pockels cell. The modulated voltage for a
particular pass when the feedback circuitry is active is modeled
by

V V V ei i i+
−= +[ ]1 ∆ τ τr t f b , (7)

where Vi is the value of the modulated voltage at the beginning
of the pass, ∆Vi is the increase in voltage due to the feedback
circuitry, and Vi+1 is the value of the modulated voltage after
the pass. The change in voltage ∆Vi is given by

∆Vi = ( ) × ( )pulse energy J feedback gain V J , (8)

where the feedback gain is determined by the feedback cir-
cuitry. In Eq. (7), the final voltage is allowed to decay every
round-trip (round-trip time τrt = 26 ns) with the exponentially
decreasing feedback decay time τfb = 35 ns. When the laser is
Q-switched at time t3, all feedback loss is removed from the
cavity allowing the free buildup of the Q-switched pulse train.

The above model describes how to calculate the output-
pulse shape from the regen given the input-pulse shape. Often
it is necessary to calculate the inverse, that is, calculate the
required input-pulse shape to the regen that will produce a
desired output-pulse shape. A good approximation for this
input-pulse shape can be gotten from the output-pulse shape
with a simple procedure. A transfer function for the regen can
be calculated by using the desired regen-output-pulse shape

I tout ( )[ ] as input to the calculation to obtain a new output-
pulse shapee.g., newI t( )[ ]. The transfer function T(t) for the
regen is obtained by dividing these two functions to get

T t
I t

I t
( ) = ( )

( )
new

out . (9)

The required input-pulse shape I tin ( )[ ] can now be calculated
with this transfer function and is given by

I t
I t

T t
in

out
( ) = ( )

( )
. (10)
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Figure 69.21
Regen temporal dynamics showing (a) feedback-controlled Pockels cell
voltages (not to scale), and (b) measured regen-output envelope filtered to
remove individual pulses in the train.



MODELING THE TEMPORAL-PULSE-SHAPE DYNAMICS

22 LLE Review, Volume 69

This simple procedure is used to obtain the required regen-
input-pulse shape that will produce the desired regen-output-
pulse shape. More importantly, this procedure is useful in
producing the desired OMEGA on-target pulse shape.

Experiments
The regen in OMEGA uses a Nd:YLF laser rod pumped to

a single-pass, small-signal gain of approximately 2.9. The laser
uses a 50% reflecting output coupler, the cavity-round-trip
time is 26 ns, and the laser operates at 5 Hz. Typical output
energies of the pulse switched out at the peak of the Q-
switched envelope are approximately 1.0 mJ.

The measured output-pulse train from the regen is shown in
Fig. 69.21(b). The output has been filtered to show only the
envelope of the pulse-train output from the regen. It can be
seen that the feedback is activated at time t2 approximately
600 ns after the pulse is injected into the cavity at time t1 = 0.
At t3 = 2.9 µs, the laser is Q-switched and a pulse train builds
up and decays as the gain is depleted.

Figure 69.22 shows the calculated-output-pulse train from
the regen for the above case. Individual pulses within the train
are shown. The calculation is based on the model described
above with typical values for the regen parameters. Note the
good agreement between the measured-output-pulse train in
Fig. 69.21(b) and the predictions shown in Fig. 69.22.

Figure 69.22
Calculated regen-output envelope corresponding to the case measured in
Fig. 69.21(b). Individual pulses are shown.

Figure 69.23 shows regen input/output-pulse shapes for a
square pulse injected into the regen. The output-pulse shape is
the pulse that is switched out at the peak of the Q-switched
envelope. The input square pulse (curve plotted with long
dashed lines) and measured-regen-output pulse (curve plotted
with short dashed lines) are shown in Fig. 69.23, along with the
calculated-output-pulse shape (curve plotted with solid line)
obtained with the above numerical method using the mea-
sured-square-pulse shape as input to the calculation. The regen
parameters used in the calculation correspond to the measured
regen parameters with slight adjustments to obtain good agree-
ment with the data. By adjusting the regen parameters in this
way, the model is calibrated to the data. Once this calibration
procedure is performed, the parameters in the model are left
unchanged and other shaped pulses can be calculated and
compared to measurements.

Figure 69.24 shows the same information as Fig. 69.23, but
for a shaped optical pulse injected into the regen. The regen
parameters were identical to those used for the calculation in
Fig. 69.23. This pulse shape, when injected into OMEGA, will
produce a square pulse shape at 351-nm wavelength at the
output of OMEGA.

In summary, we have modeled the temporal evolution of a
shaped optical pulse injected into our feedback-stabilized
regen to a high degree of accuracy. We have solved the rate
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Figure 69.23
Square-pulse distortion from the regen showing the input-pulse shape (long
dashed lines), the measured-output-pulse shape (short dashed lines), and the
calculated-output-pulse shape (solid line).
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equations including upper- and lower-laser-level lifetimes ex-
plicitly. We provide a prescription for determining the
injection-pulse shape required to produce a given output-pulse
shape from this regen. Finally, with this model of the regen, the
entire OMEGA laser system can be modeled, and on-target
pulse shapes can be specified in advance by OMEGA users.
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Shaped pulse from the regen showing the input-pulse shape (long dashed
lines), the measured-output-pulse shape (short dashed lines), and the calcu-
lated-output-pulse shape (solid line).
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The ponderomotive force associated with a light wave of
variable amplitude1–10 drives many phenomena that occur in
inertial confinement fusion11 and particle acceleration12 ex-
periments. The existing formula for the ponderomotive force
was derived under the assumption that the quiver speed of
electrons oscillating in the applied electric field is much less
than the speed of light. With the advent of intense laser
pulses,13 it is important to extend this formula to electron
quiver speeds that are comparable to the speed of light.

As an introduction to this subject, we review the derivation
of the ponderomotive term in the electron-fluid momentum
equation. The standard form of this equation is

∂ γt + ∇( )( ) = − + ×( )⋅v v E v B , (1)

where

  
γ = −( )−

1 2 1 2
v (2)

is the Lorentz factor associated with the fluid velocity and

E A B A= − = ∇ ×∂t , (3)

in the radiation gauge. These differ from the usual equations in
that ωt → t, kx → x, v/c → v, eE/mωc → E, eB/mωc → B,
and eA/mc2 → A.

By using the vector identity14

v v v v⋅∇( )( ) = ∇ − × ∇ × ( )[ ]γ γ γ , (4)

one can rewrite the momentum equation as

∂ γ γ γt v A v v A−( ) = × ∇ × −( )[ ] − ∇ , (5)

Multiple Scale Derivation of the Relativistic Ponderomotive Force

from which follows the relativistic vorticity equation

∂ γ γt ∇ × −( )[ ] = ∇ × × ∇ × −( )[ ]{ }v A v v A . (6)

For a plasma that is at rest before the laser pulse arrives,
∇ × −( ) =γ v A 0  initially. Equation (6) ensures that
∇ × −( ) =γ v A 0 for all time. Thus, the momentum equation
can be rewritten as14

∂ γt u A−( ) = −∇ , (7)

where the fluid momentum u v= γ . It follows from this
definition that γ = +( )1 2 1 2

u .

The ponderomotive term on the right side of Eq. (7) is valid
for arbitrary laser intensity. Together with the continuity and
Maxwell equations, it allows one to analyze the interaction of
a laser pulse with an electron fluid. However, there is a tradition
in plasma physics of looking at the same phenomenon from
different viewpoints. By doing so, one often gains physical
insight into the phenomenon under study. The ponderomotive
term in Eq. (7) is not the force on a Lagrangian fluid element
or a single electron. Consequently, it cannot be used as the
foundation of a single-particle or kinetic analysis of the inter-
action of a laser pulse with a plasma.

In the following sections we present (1) an analytical study
of the motion of an electron in a light wave of constant
amplitude; (2) using the results of this study, a heuristic
derivation of the formula for the ponderomotive force associ-
ated with a light wave of variable amplitude; (3) numerical and
analytical verification of this formula; and, finally, (4) a sum-
mary of the results.

Particle Motion in a Plane Wave
The motion of a charged particle, of charge q and mass m,

in an electromagnetic field is governed by the equation15
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d u a u aτ µ µ
ν

µ ν∂+( ) = , (8)

where τ is the proper time of the particle multiplied by c, uµ

is the four-velocity of the particle divided by c, aµ is the four-
potential of the field multiplied by q/mc2 and ∂ ∂ ∂µ

µ= x . For
an elliptically polarized field

a e ey z
µ φ φ= ( )0 0, , cos , sin , (9)

where e ey = δ , e ez = −( )1 2 1 2
δ , and φ = t−x.

The motion of a charged particle in a plane wave is well
known.16–19 We present an analysis of this motion here be-
cause it is the foundation of analyses presented later in this
article. Since the four-potential does not depend on y or z, it
follows from Eq. (8) that

dτ u a⊥ ⊥+( ) = 0. (10)

Transverse canonical momentum is conserved. It follows from
Eq. (10) that

u u a a⊥ ⊥ ⊥ ⊥( ) = ( ) + ( ) − ( )τ τ0 0 . (11)

The t and x components of Eq. (8) are

d u d u ut x xτ τγ ∂ ∂= = −⊥ ⊥
1
2

2 1
2

2,    . (12)

Since the four-potential is a function of t−x, it follows from
Eqs. (12) that

d uτ γ −( ) =|| .0 (13)

Because the particle gains energy and momentum at the ex-
pense of the field, the ratio of particle momentum to particle
kinetic energy is identical to the ratio of field momentum to
field energy, which is 1 in the units of Eq. (8). By combining
Eq. (13) with the definition of γ, one can show that

u u
u u

u|| ||
||

.τ
τ

γ
( ) = ( ) +

( ) − ( )
( ) − ( )[ ]

⊥ ⊥0
0

2 0 0

2 2
(14)

The corresponding equation for γ (t) follows from Eqs. (13) and
(14). Because the transverse potential a⊥  is a function of φ

rather than τ, Eqs. (11) and (13) describe the particle momen-
tum implicitly. One can make this description explicit and
determine the particle trajectory xµ(τ) by using the result

d uτφ γ= ( ) − ( )0 0|| . (15)

The proper frequency of the wave is constant.

It is clear from Eqs. (11), (14), and (15) that the particle
motion is a superposition of sinusoidal oscillations in τ and
steady drifts in τ. It follows from Eq. (11) that the transverse
drifts are given by

u u e x

u u e x

y y y

z z z

= ( ) + −( )
= ( ) + −( )

0

0

0

0

cos ,

sin ,
(16)

where .  denotes the τ-average . dτ ππ
2

0
2

∫  and (x0,0,0) is
the initial position of the particle. By decomposing the longi-
tudinal momentum into its oscillatory component

u u
u u

u|| ||
||

τ
τ

γ
( ) − =

( ) −

( ) − ( )[ ]
⊥ ⊥
2 2

2 0 0
(17)

and its drift component

u u
u u

u|| ||
||

,= ( ) +
− ( )

( ) − ( )[ ]
⊥ ⊥0

0

2 0 0

2 2

γ
(18)

and combining Eqs. (11) and (18), one can show that the
longitudinal drift is given by

u u u e x

u e x e x

e x u

x x y y

z z y

z x

= ( ) + −( )[
+ −( ) − −( )
+ −( )] ( ) − ( )[ ]

0 4

4 2

2 4 0 0

0

0
2

0

2
0

cos

sin cos

cos .γ (19)

For linear polarization Eq. (19) reduces to

u u u e x

e x u

x x y

x

= ( ) + −( )[
− −( )] ( ) − ( )[ ]

0 4

2 4 0 0

0

2
0

cos

cos ,γ (20)

whereas for circular polarization it reduces to
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u u e u x

u x u

x x y

z x

= ( ) + −( )[
+ −( )] ( ) − ( )[ ]

0

2 0 0

0

0

cos

sin .γ (21)

The corresponding equations for γ  follow from Eq. (13) and
Eqs. (19)–(21).

For completeness, a covariant analysis of the particle mo-
tion is given in Appendix A.

Heuristic Derivation of the Ponderomotive Force
The method used to solve Eq. (8) for a plane wave of

constant amplitude can also be used when the wave amplitude
e is a function of t−x. In fact, Eqs. (11), (14), and (15) are still
valid. When the wave amplitude varies slowly compared to the
wave phase, the particle motion consists of an oscillation about
a guiding center and a guiding-center drift that varies slowly.
As the guiding center drifts, the oscillation amplitude follows
the wave amplitude at the guiding center adiabatically.

To describe this motion quantitatively, let ξµ be the position
four-vector of the guiding center and υ ξµ

τ
µ= d  be the asso-

ciated four-momentum. The ponderomotive four-force is the
proper rate of change of the guiding-center four-momentum.
One might expect this four-force to also be the average rate of
change of the particle four-momentum. However, by averaging
the transverse particle motion, one finds that

d u d e

d u d e

y y

z z

τ τ

τ τ

τ τ

τ τ

≈ ( )[ ] ( )

≈ ( )[ ] ( )
0

0

0 0

0 0

cos ,

sin ,
(22)

where τ0 is the initial phase with respect to which the average
is taken. Because the oscillation amplitude changes during
each oscillation, the transverse components of the momentum
change by amounts that depend on the initial phase. However,
it follows from Eq. (11) that the transverse components of the
guiding-center momentum are constant. Thus, if one is to
determine the ponderomotive four-force by averaging, one
must discount terms that depend on the initial phase. With this
caveat added to the definition of . , one can write

d d u d d uy y z zτ τ τ τυ υ= ≈ = ≈0 0,    (23)

and show that

d d u d e e ux x y zτ τ τυ γ= ≈ +( ) ( ) − ( )[ ]2 2 4 0 0|| . (24)

By using the relationship between x and φ, and Eq. (15), one
can show that d u xτ γ ∂= − ( ) − ( )[ ]0 0|| . It follows from this
result and Eq. (24) that

d ex xτυ ∂≈ − ( )2 4 . (25)

In a similar way, one can show that

d et tτυ ∂≈ ( )2 4 . (26)

By using the facts that e a2 22 = ⊥  and a a a⊥ = −2
ν

ν , one can
rewrite Eqs. (23), (25), and (26) as

d a aτ µ µ ν
νυ ∂≈ − 2 . (27)

The second term in this relation is the ponderomotive
four-force.

The guiding-center Eq. (27) was derived for the special case
in which e is a function of t−x. However, the principle of
Lorentz covariance suggests that it is valid for the general case
in which e is a function of t, x, y, and z. Consequently, we
postulate that20

d a aττ µ µ ν
ν

ξξ ∂
µ

2 2= − (28)

and the initial guiding-center momentum in a wave of variable
amplitude is identical to the particle drift momentum in a wave
of constant amplitude, which is given by Eqs. (16) and (19). For
future reference, Eq. (28) has associated with it the conserva-
tion equation

d a aτ µ
µ

ν
νυ υ 2 2 0+( ) = . (29)

Numerical Study of the Particle Motion
To test the guiding-center model described in the previous

section, we studied three representative examples numerically.
The first example concerns a particle that moves in front of a
laser pulse. We considered a wide, circularly polarized pulse,
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with e t x= −( )[ ]3 0 052sin . , and chose ux(0) = 1, uy(0) = 1, and
uz(0) = 1. Because the pulse propagates at the speed of light, it
overtakes the particle. The resulting particle motion is illus-
trated in Figs. 69.25 and 69.26, in which the solid lines denote
the particle trajectory, determined numerically from Eq. (8)
and the initial conditions, and the dashed lines denote the
guiding-center trajectory, determined numerically from
Eqs. (28), (16), and (19). As the pulse overtakes the particle, the
amplitudes of the transverse components of the oscillation
increase and decrease in proportion to the pulse intensity.
However, there is no change in the transverse components of
the average momentum, and the particle exits the pulse with
uy = 1 and uz = 1. The amplitude of the longitudinal component
of the oscillation also increases and decreases in proportion to
the pulse intensity. However, because Eq. (14), which de-
scribes the relation between the longitudinal and transverse
components of the momentum, is nonlinear, the longitudinal
component of the average momentum changes. This change

can be analyzed quantitatively. It follows from the t and x
components of Eq. (28), and the assumed dependence of e on
t−x, that

d t xτ υ υ−( ) = 0. (30)

Since υy and υz are constant, Eq. (29) reduces to

d et xτ υ υ2 2 22 4 0−( ) −[ ] = . (31)

By combining Eqs. (30) and (31) with the initial conditions,
one can show that υt = 2 + e2/4 and υx = 1 + e2/4. At the peak
of the pulse υx = 13/4, in agreement with Fig. 69.25(a).
Because the x component of the ponderomotive force is posi-
tive in the front of the pulse and negative in the back of the
pulse, the guiding center is accelerated and decelerated by
equal amounts. In this example the correspondence between
the guiding-center motion and the particle motion is excellent.
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Figure 69.25
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a circularly polarized pulse with amplitude e = 3 sin2 [0.05(t−x)]. Initially,
ux = 1, uy = 1, and uz = 1. (a) The x component of the momentum. (b) The x
component of the displacement caused by the pulse. The initial drift upon
which this displacement is superimposed is not shown.
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Figure 69.26
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a circularly polarized pulse with amplitude e = 3 sin2 [0.05(t−x)]. Initially,
ux = 1, uy = 1, and uz = 1. (a) The y component of the momentum. (b) The z

component of the momentum.
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The second example concerns a particle that is born inside
a laser pulse by high-field ionization.21 We considered a long
pulse that is linearly polarized in the y direction, with e = cos2

(0.05 z), and chose ux(0) = 0, uy(0) = 0, and uz(0) = 0. The
resulting particle motion is illustrated in Figs. 69.27 and 69.28.
The particle is born near the propagation axis of the pulse and
is pushed outward by the z component of the ponderomotive
force. As the particle moves outward, the amplitudes of the
longitudinal and transverse components of the oscillation
decrease in proportion to the pulse intensity. This transverse
expulsion can be analyzed quantitatively. Since υt, υx, and υy
are all constant, Eq. (29) reduces to

d ezτ υ2 22 4 0+( ) = , (32)

in which υz
2 2  plays the role of kinetic energy and e2/4 plays

the role of potential energy. It follows from Eq. (32) and the
initial conditions that υz e2 21 2≈ −( ) . As the guiding center
exits the pulse, υz ≈ 1 2 , in agreement with Fig. 69.27(a).

Although the particle is born at rest, it exits the pulse with ux
≈ 3/4 and uy ≈ 1. This behavior is consistent with Eqs. (16) and
(19). In this example the correspondence between the guiding-
center motion and the particle motion is excellent.

The third example concerns a particle that is injected into a
laser pulse from the side. We considered a long pulse that is
linearly polarized in the y direction, with e y= ( )sin .2 0 05 , and
chose ux(0) = 0.0, uy(0) = 0.7, and uz(0) = 0.0. The resulting
particle motion is illustrated in Figs. 69.29 and 69.30. As the
particle moves inward, the amplitudes of the longitudinal and
transverse components of the oscillation increase in proportion
to the pulse intensity. However, the y component of the
ponderomotive force opposes the inward motion, and the
particle is repelled just before it reaches the propagation axis
of the pulse. As the particle moves outward, the amplitudes of
the longitudinal and transverse components of the oscillation
decrease in proportion to the pulse intensity. This transverse
repulsion can be analyzed quantitatively. Since υt, υx, and υz
are all constant, Eq. (29) reduces to
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Figure 69.27
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitude ey = cos2 (0.05z). Initially, ux =
0, uy = 0, and uz = 0. (a) The z component of the momentum. (b) The z
component of the displacement.
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Figure 69.28
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitude ey = cos2 (0.05z). Initially, ux =
0, uy = 0, and uz = 0. (a) The x component of the momentum. (b) The y
component of the momentum.
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d eyτ υ2 22 4 0+( ) = . (33)

It follows from Eq. (33) and the initial conditions that
υy e2 21 2≈ −( ) . The outward guiding-center trajectory is the
inverse of the inward trajectory. In this example the correspon-
dence between the guiding-center motion and the particle
motion is good. We found the correspondence to be even better
for gentler gradients in pulse intensity.

In Figs. 69.25–69.30 the particle and guiding-center posi-
tions were plotted as functions of the proper time. We verified
numerically that plotting the spatial components of the guid-
ing-center position as functions of the temporal component of
the guiding-center position produces the correct guiding-cen-
ter motion in the laboratory frame.

Multiple Scale Analysis of the Particle Motion
In this section we verify Eq. (28) analytically. Because the

fast variation of the four-potential depends on the phase rather

than the proper time, it is advantageous to change the indepen-
dent variable in Eq. (8) from τ to φ. The result is

d d d x a d x av
φ τ φ µ µ φ µ νφ ∂+( ) = , (34)

where d d x d xτ φ
ν

φ νφ = ( )−1 2
. The resolution of Eq. (34) into

longitudinal and transverse components is facilitated by the
introduction of the four-vector kµ, which is defined by the
equation φ ν

ν= k x , and the four-vector lµ, which is defined by
the equations l lν

ν = 0 , k lν
ν = 2 , and a lν

ν = 0 , where aµ is
the transverse four-potential of a plane wave. In the laboratory
frame kµ = (1,1,0,0) and lµ = (1,−1,0,0). By using these four-
vectors one can write

x y k lµ µ µ µθ φ= + +2 2 , (35)

where θ ν
ν= l x . The transverse position four-vector satisfies

the equations k yν
ν = 0 and l yν

ν = 0. In a similar way, one can
write
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Figure 69.29
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitude ey = sin2 (0.05y). Initially, ux =
0.0, uy = 0.7, and uz = 0.0. (a) The y component of the momentum. (b) The y

component of the displacement.

Figure 69.30
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitude ey = sin2 (0.05y). Initially, ux =
0.0, uy = 0.7, and uz = 0.0. (a) The z component of the momentum. (b) The x

component of the momentum.
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a b qk plµ µ µ µ= + +2 2, (36)

where the transverse four-potential satisfies the equations
k bν

ν = 0  and l bν
ν = 0 . By substituting the decompositions

(35) and (36) into Eq. (34) and collecting like terms, one can
show

d

d

dy

d
b

b

y

dy

d

p

y

d

d

q

yφ σ φ
∂
∂ φ

∂
∂

θ
φ

∂
∂

µ
µ

ν

µ
ν

µ µ
1 1

2
+







= + +






, (37)

d

d
p

b dy

d

p d

d

q

φ σ
∂
∂θ φ

∂
∂θ

θ
φ

∂
∂θ

ν
ν1

2+



 = + + , (38)

d

d

d

d
q

b dy

d

p d

d

q

φ σ
θ
φ

∂
∂φ φ

∂
∂φ

θ
φ

∂
∂φ

ν
ν1

2+






= + + , (39)

where

σ θφ
ν

φ ν φ= +( )d y d y d
1 2

. (40)

Equation (39) can be derived from Eqs. (37) and (38), as shown
in Appendix B, and need not be considered further.

One can solve Eqs. (37) and (38) by using multiple scale
analysis. Let ε be a measure of the rate at which the wave
amplitude varies relative to the rate at which the phase varies.
We introduce the scales

φ φ φ εφ0 1= =,    (41)

to resolve the fast oscillation and the slow change in the
guiding-center drift, respectively. It follows that

d

d

d

d

d

dφ φ
ε

φ
= +

0 1
. (42)

We used the notation d dφ0  and d dφ1  in Eq. (42) to distin-
guish these convective derivatives from the partial derivatives
of the four-potential. We assume that the dependent variables
can be written as

y y y yµ µ µ µε φ φ φ ε φ φ

θ ε θ φ θ φ φ ε θ φ φ

≈ ( ) + ( ) + ( )

≈ ( ) + ( ) + ( )

− −( ) ( ) ( )

− −( ) ( ) ( )

1 1
1

0
0 1

1
0 1

1 1
1

0
0 1

1
0 1

, , ,

, , .

(43)

The variables yµ
−( )1  and θ(−1) describe the guiding-center drift,

which changes on the slow scale φ1. The variables yµ
0( )  and θ(0)

describe the fast oscillation of the particle about the guiding
center, the amplitude of which changes on the slow scale.

The four-potential satisfies Maxwell’s wave equation14

∂ ∂ ∂ ∂λ
λ ν

µ µ
ν

νg a−( ) = 0, (44)

where gν
µ = − − −( )diag 1 1 1 1, , ,  is the metric four-tensor. For a

wave of constant amplitude, a x bµ
ν

µ φ( ) = ( )( )0
0 . For a wave of

variable amplitude we assume that

a x a x a xµ
ν

µ
ν

µ
νφ ε ε φ ε( ) ≈ ( ) + ( )( ) ( )0

0
1

0 . (45)

Each contribution to the four-potential and its derivatives can
be written approximately as

a y a y

y a y

a y

φ ε εθ εφ φ θ φ

ε ∂ φ θ φ

εθ ∂ φ θ φ

ν ν

ν
ν ν

θ ν

0 0
1 1

1

0
0

1 1
1

0
0

1 1
1

 , ,  , ,

, ,

, , .

( ) ≈ 





+ 





+ 





−( ) −( )

( ) −( ) −( )

( ) −( ) −( ) (46)

The first term on the right side of Eq. (46) is the contribution
evaluated at the guiding center, and the second and third terms
are the deviations from this average contribution that are felt by
the particle as it oscillates about the guiding center. The
corresponding approximation for the convective derivative of
the four-potential is discussed in Appendix C. Henceforth, we
will use a  to denote the guiding-center contribution

a yφ θ φν0
1 1

1
−( ) −( )



, , .

To proceed further one substitutes Eqs. (42), (43), and (46)
in Eqs. (37) and (38) and collects terms of like order. The order
ε−1 equations are satisfied identically by Ansaetze (43).

The order 1 equations are

d

d

dy

d
b

φ σ φ
µ

µ
0

0

0

0

01
0( )

( )
( )+













= , (47)
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d

dφ σ0
0

1
0( )







= , (48)

where

σ

θ θ

ν ν

ν ν

0
0

0
1

1

0
0

1
1

0
0

1
1

1 2

( ) ( ) −( )

( ) −( ) ( ) −( )

= +[ ]{
× +[ ] + + }
d y d y

d y d y d d (49)

and d d dn n= φ .

Equation (47) is the analog of Eq. (10). It follows from the
former equation that

d y b0
0 0 0

µ µσ( ) ( ) ( )= − . (50)

The arbitrary function of φ1 that results from the φ0 integra-
tion can be neglected because yµ

−( )1  already accounts for the
slowly varying drift with which this function is associated.
Equations (48) and (49) do not resemble any of the equations
in the section Particle Motion in a Plane Wave. However,
different forms of the latter equations are discussed in Appen-
dix A, from which it is clear that Eqs. (48) and (49) comprise
the analog of Eq. (A9). It follows from Eq. (48) that σ(0) is a
function of φ1 alone. This result is the analog of Eq. (15) and
facilitates the integration of Eq. (50). By combining Eqs. (49)
and (50), and equating the oscillatory and slowly varying terms
that result, one can show that

d d y b

b b b b

0
0 0

1
1 0

0 2 0 0 0 0

2θ σ

σ

ν
ν

ν
ν

ν
ν

( ) ( ) −( ) ( )

( ) ( ) ( ) ( ) ( )

=

+[ ] −





(51)

and

d d y d y

b b

1
1

1
1

1
1

0 2 0 01

θ

σ

ν
ν

ν
ν

−( ) −( ) −( )

( ) ( ) ( )

+

= [ ] −




. (52)

Equation (51) is the analog of Eq. (17) and the oscillatory part
of Eq. (A7), and is easy to integrate.

Now consider the initial condition on the order-1 four-
momentum. Consistent with Eq. (35), one can write the initial
four-momentum as

  u l u k k u lµ µ ν
ν

µ ν
ν

µ0 0 0 2 0 2( ) = ( ) + ( ) + ( )v . (53)

It follows immediately that

  
d y d y1

1 0
0

00 0 0µ µ µσ−( ) ( ) ( )( ) = ( ) − ( )v , (54)

d l u d1
1 0

0
00 0 0θ σ θν

ν
−( ) ( ) ( )( ) = ( ) − ( ) . (55)

Equation (54) is the analog of Eqs. (16), and Eq. (55) is
consistent with Eqs. (17) and (18).

The order ε equations are

d

d

dy

d

dy

d
b

d

d

dy

d

dy

d
b

d

d

φ σ φ φ

φ σ φ φ

φ
σ

σ

µ µ
µ

µ µ
µ

1
0

0

0

1

1

0

0
0

1

0

0

1

1

0

1

0

1

1

2

( )

( ) −( )
( )

( )

( ) ( )
( )

( )

( )

+












+












+ +












+












−
[ ]]

+




























= +












( ) −( )

( ) −( ) ( )

3

0

0

1

1

0

0

1

1

0

dy

d
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d

dy

d

dy

d

b

y

µ µ

ν ν
ν

µ

φ φ

φ φ
∂
∂

(56)

and

d

d

d

d
p

dy

d

dy

d

b

φ σ φ
σ

σ

φ φ
∂

∂θ

ν ν
ν

1
0

0

1

0 3
1

0

0

1

1

0

1

2

2

( )
( )

( )
( )

( ) −( ) ( )







−
[ ]

+
















= +












, (57)
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where

σ θ
φ

θ
φ

φ φ φ φ

ν ν ν ν

1
1

0

0

1

0

0

1

1

1

0

0

1
2

( )
( ) ( )

( ) −( ) ( ) ( )

= +

+ +












+












d

d

d

d

dy

d

dy

d

dy

d

dy

d
, (58)

and bµ
1( )  and p 1( )  represent the sum of the order ε four-

potential and the order ε corrections to the order-1 four-
potential caused by the oscillation of the particle about the
guiding center.

Although Eqs. (56)–(58) are lengthy, they do not need to be
solved in their entirety. By equating the slowly varying terms
in Eqs. (56) and (57), one can show that

1 1 1

20
1

0

1

1

0 0

σ φ σ φ

∂

∂
µ

ν
ν

µ( ) ( )

−( ) ( ) ( )











= −d

d

dy

d

b b

y
(59)

and

1 1
0

1
0

0 0

σ φ σ

∂

∂θ

ν
ν

( ) ( )

( ) ( )






= −d

d

b b
. (60)

It follows from Eq. (52) that

1 1

1

1 1 1

0
1
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1

1

0 0

0

0

1

0 0

1

0
1

0
0

1

1
0

1

σ φ σ
θ
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σ
σ
φ φ

σ φ
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( ) ( )
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−(


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=
−

−

−

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
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d

d

d

d

b b d

d

d b b

d

d

d
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d

dy ))





















dφ1
. (61)

When applied to any guiding-center quantity, the operator

d

d

dy

d y

d

dφ φ
∂

∂
∂

∂φ
θ

φ
∂

∂θ

ν

ν
1

1

1 1

1

1
= + +

−( ) −( )
. (62)

By combining Eq. (61) with Eqs. (59), (60), and (62), one can
show that

1 1
0

1
0

1

1

0 0

1σ φ σ
θ

φ

∂

∂φ

ν
ν

( ) ( )
−( ) ( ) ( )













= −d

d

d

d

b b
. (63)

Recall that the preceding derivation of Eq. (63) is based on
Eq. (38). Had we analyzed Eq. (39) instead, we would have
needed to determine bν

1( ) , p(1), q(1), and yν
1( )  explicitly.

In the notation of this section, Eq. (28) can be rewritten as

d x

d

b b

x

2 1

1
2

0 0

1

1

2
µ

ν
ν

µτ

∂

∂

−( ) ( ) ( )

= − , (64)

where τ1 = ετ and x x1
µ µε= . Since d dφ τ σ1 1

01≈ ( ) ,
Eq. (59) is the transverse part of Eq. (64). By contracting
Eq. (64) with kµ and lµ, and using the identities k µ

µ θ∂ ∂= 2
and lµ

µ φ∂ ∂= 2 , and the fact that φ µ
µ≈ −( )k x 1 , one can show

that Eqs. (60) and (63) are equivalent to the longitudinal part
of Eq. (64). Thus, Eq. (28) is correct.

Finally, notice that Eq. (64) for the guiding-center drift is
written in terms of the proper time, which includes the effects
of the oscillation about the guiding center. Although this fact
does not affect the utility of Eq. (64), it calls into question the
aesthetic qualities of the equation. Just as the proper time is
defined by the equation d dx dxτ ν

ν= ( )1 2, one can define the
drift time by the equation ds dx dx= [ ]−( ) −( )1 1 1 2ν

ν .

It follows from this definition, Eq. (52), and the discussion
of the preceding paragraph that

ds

d
b b1

1

0 0
1 2

1
τ

ν
ν= −





( ) ( ) . (65)

Equation (65) can be used to write Eq. (28) in terms of the
drift time.
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Summary
In this article we solved the equation of motion for an

electron in a plane wave. We used this solution and the
principle of Lorentz covariance to deduce a formula for the
ponderomotive force exerted by an intense laser pulse on an
electron. We verified this formula numerically, for three cases
of current interest, and analytically, using the method of
multiple scales.

The aforementioned formula can be used to study the
effects of the radial ponderomotive force on laser-plasma
interactions. For particle accelerators, these effects include
the divergence of an electron bunch that is accelerated by a
laser pulse,22 the relativistic focusing of the pulse, and elec-
tron cavitation and magnetic field generation in the wake of
the pulse.
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Appendix A:  Covariant Analysis of the Particle Motion
in a Plane Wave

The motion of a charged particle in an electromagnetic
field is governed by Eq. (8). For a plane wave the four-potential
aµ is a function of the phase φ ν

ν= k x . It follows that
∂µ ν µ νa k a= ′ , where 9 = d dφ , and, hence, that

d u a u k aτ µ µ
ν

µ ν+( ) = ′ . (A1)

By substituting the decomposition

  
u k u l l u kµ µ

ν
ν µ

ν
ν µτ τ τ τ( ) = ( ) + ( ) + ( )v 2 2 (A2)

into Eq. (A1), where lν was defined after Eq. (8), and vµ
satisfies the equations   k

ν
νv = 0  and   l

ν
νv = 0, one can show

that

  
d a d k u d l u aτ µ µ τ

ν
ν τ

ν
ν

ν
νv v+( ) = ( ) = ( ) = ′0 0 2, , . (A3)

It follows from the first of Eqs. (A3) that

  
v vµ µ µ µτ τ( ) = ( ) + ( ) − ( )0 0a a . (A4)

It follows from the second of Eqs. (A3) that

k u k uν
ν

ν
ντ( ) = ( )0 (A5)

and, hence, that

φ τν
ν= ( )k u 0 . (A6)

Equations (A4) and (A6) determine vµ(τ) explicitly. There are
at least three ways to obtain an expression for lν uν. In the first
approach, one uses Eq. (A4) to rewrite the right side of the
third of Eqs. (A3) in terms of aµ. It follows from this equation
and Eq. (A6) that

  

l u l u a

a a k u

a a a a k u

ν
ν

ν
ν

ν ν

ν ν
ν

ν

ν
ν

ν
ν

ν
ν

τ

τ

τ τ

( ) = ( ) + ( ) + ( )[ ]

× ( ) − ( )[ ] ( )

+ ( ) ( ) − ( ) ( )[ ] ( )

0 2 0 0

0 0

0 0 0

v

. (A7)

In the second approach, one uses Eq. (A4) to rewrite the right
side of the third of Eqs. (A3) in terms of vµ. It follows from
this equation and Eq. (A6) that

  

l u l u

k u

ν
ν

ν
ν

ν
ν

ν
ν

ν
ν

τ

τ τ

( ) = ( ) + ( ) ( )[
− ( ) ( )] ( )

0 0 0

0

v v

v v . (A8)

In the third approach one uses decomposition (A2) to rewrite
the identity u uν

ν = 1 as

  
k u l uν

ν
ν

ν
ν

ν( )( ) + =v v 1. (A9)

Since k uν
ν  and   v vν

ν  are known quantities, Eq. (A9) provides
a third expression for l uν

ν . By rewriting the 1 on the right side
of Eq. (A9) in terms of the initial values of the quantities on the
left side, one can rewrite Eq. (A9) in the form of Eq. (A8). All
three approaches have their uses. Equation (A4) is the covari-
ant version of Eq. (11), and Eqs. (A5) and (A8) are the
covariant versions of Eq. (14) for u|| and its analog for γ.
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Appendix B:  Covariant Lagrangian for the Particle
Motion

For a particle in an electromagnetic field the normalized
motion19

S dx dx a dx= − ( ) +



∫ ν

ν
ν

ν
1 2

. (B1)

Traditionally, one parameterizes the particle motion in terms of
the proper time τ, which is a Lorentz invariant. In this case

S d x d x a d x d= − ( ) +



∫ τ

ν
τ ν

ν
τ ν τ

1 2
. (B2)

By applying the Euler-Lagrange equations to the integrand of
Eq. (B2), one finds that

d d x a d x aτ τ µ µ τ
ν

µ ν∂+( ) = , (B3)

in agreement with Eq. (8). Alternately, one can parameterize
the particle motion by the phase φ ν

ν= k x , which is also a
Lorentz invariant. In this case

S d x d x a d x d= − ( ) +



∫ φ

ν
φ ν

ν
φ ν φ

1 2
. (B4)

By using the decompositions (35) and (36) one can rewrite
Eq. (B4) as

S d y d y d

b d y pd q d

= − +( )


+ + + ]
∫ φ

ν
φ ν φ

ν
φ ν φ

θ

θ φ

1 2

2 2 . (B5)

By applying the Euler-Lagrange equations to the integrand of
Eq. (B5), one can show that

d

d d y d y d

dy
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d
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, (B6)

d

d d y d y d
q

b dy

d

p d

d

q

φ θ

∂
∂θ φ

∂
∂θ

θ
φ
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φ ν φ
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1 2
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+
















= + + , (B7)

in agreement with Eqs. (37) and (38). One can reproduce
Eq. (39) by multiplying Eq. (B6) by −2d yφ

µ  and Eq. (B7)
by −dφθ , and adding the resulting equations.

Appendix C:  Evaluation of the Four-Potential
The left side of Eq. (34) contains the term da dµ φ , which

must be evaluated at the position of the particle. In the section
Multiple Scale Analysis of the Particle Motion we used
Eqs. (42), (43), and (46) to make a guiding-center expansion of
aµ before we took the convective derivative. Specifically, we
wrote

d a d d a aφ µ µε ε≈ +[ ] +[ ]( ) ( )
0 1

0 1 , (C1)

where

a aµ µ
0( ) = (C2)

is the four-potential evaluated at the guiding center and

a y a aµ
ν

ν µ θ µ∂ θ ∂1 0 0( ) ( ) ( )= + (C3)

is the correction to the four-potential caused by the oscillation
of the particle about the guiding center. Since the guiding-
center coordinates y(−1) and θ(−1) are functions of φ1 by
construction,

da

d

aµ µ
φ

∂
∂φ0 0

= (C4)

and
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d

dy

d

a

y

a d

d

aµ ν µ
ν

µ µ
φ φ

∂
∂

∂
∂φ

θ
φ

∂
∂θ1

1

1 1

1

1
= + +

−( ) −( )
. (C5)

It follows from Eqs. (C1), (C4), and (C5) that
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and
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Alternately, one can write

da

d

dy

d

a

y

a d

d

aµ ν µ
ν

µ µ
φ φ

∂
∂

∂
∂φ

θ
φ

∂
∂θ

= + + , (C8)

in which the guiding-center expansion is made after the partial
derivatives are taken. Since the variation of aµ with the position
variables yν and θ is slow,
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. (C9)

The derivatives of the four-potentials appearing in the order ε
terms can be approximated by their guiding-center values. The
remaining term

∂
∂φ

∂
∂φ

ε
∂

∂ ∂φ
εθ

∂
∂θ∂φ

µ µ ν µ
ν

µa a
y

a

y

a

0 0

0
2

0

0
2

0
≈ + +( ) ( ) . (C10)

Equations (C9) and (C10) are equivalent to Eqs. (C4) and (C5).
This result shows that the guiding-center expansion discussed
previously was made consistently. The expansion based on

Eq. (C1) is better because it facilitates the identification of
combinations of terms that are oscillatory and, hence, do not
affect the guiding-center motion.
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Ultrafast electro-optic (EO) sampling was first demonstrated
in 19821 and has since become a valuable tool for testing
optoelectronic and electronic devices and materials.2 Conven-
tional EO sampling of weak electric fields employs a tightly
focused, pulsed-laser probe beam to measure electric-field-
induced birefringence in an EO crystal; hence, it is referred to
as “point” sampling.

Densely packed analog and digital devices make it neces-
sary to probe many nodes simultaneously. Meyer and Mourou3

first demonstrated electric field mapping by scanning an area
using a point sampler. Mertin4 reviews the development of
two-dimensional field measurement technologies including
an automated scanning point sampler. Two groups studying
photoconductive switches5,6 pioneered the use of EO imaging,
by mapping the field strength with a detector array. Their
work differs from the present in that their devices exhibited
high fields and were adequately described with 200-ps
temporal resolution.

An EO sampling system capable of imaging the voltage
distribution over a rectangular region is described. It is compa-
rable to an ultrafast sampling oscilloscope having more than
180,000 channels. This analysis focuses on techniques that
take advantage of the speed and convenience of a charge-
coupled-device (CCD) sensor while overcoming its limited
dynamic range.

System Descriptions
EO sampling requires a pulsed (or gated) laser source to

probe the response of the device to the applied transient. Our
lab uses a mode-locked Coherent Mira 900 Ti:sapphire laser. It
produces a 76-MHz train of linearly polarized, ≈100-fs FWHM
pulses, tuned to ≈800 nm. Devices tested in our lab generally
include a photoconductive switch that is excited with a fraction
of the pulsed beam, thus triggering the measurement and
eliminating electrical jitter.

Subpicosecond Imaging System Based on Electro-Optic Effect

In a point sampler,2 the EO crystal may be either the device
substrate (e.g., GaAs devices) or on an external probe. A
linearly polarized optical probe pulse enters the crystal through
the first surface. In transmissive sampling, the probe is trans-
mitted at the second surface after a single pass, whereas in
reflective sampling, it is reflected, passing through the crystal
a second time. The beam exits the crystal and is passed through
a compensator or wave plate to introduce a static polarization
bias. The bias is adjusted so that in the absence of an electric
field, the probe is circularly polarized at the input of an
analyzer, thus giving maximum sensitivity and linearity when
a field is applied. The analyzer separates the beam into or-
thogonal polarization components, which are measured by a
pair of detectors connected to a differential lock-in amplifier.
Signal-to-noise improvements are obtained when the signal is
modulated at frequencies approaching the laser 1/f noise floor.

Figure 69.31 depicts the imaging system hardware. Reflec-
tive sampling was chosen because it doubles system sensitivity,
although transmissive sampling is also possible. The laser
source is directed through a high-speed modulator followed by
a variable-intensity beam splitter consisting of a half-wave
plate and polarizing beam splitter. The horizontally polarized
“probe” beam is directed back through the polarizer, then into
a spatial filter and beam expander. The vertically polarized
“excitation” beam passes through a variable-length optical
delay and into a fiber coupler.

The probe beam is split into two beams in a small, rigid
interferometer. The device-under-test (DUT) is mounted in
the device “leg” of the interferometer, and a mirror is installed
in the reference “leg.” The beams pass through a polarizing
filter and relay lens to create an interference pattern at the
camera. The beam splitter in the interferometer is an uncoated,
≈3-mm-thick, BK-7 wedged window. The first surface of the
window is aligned at Brewster’s angle to eliminate multiple
reflections and maximize transmitted intensity. The reference
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mirror is mounted on a piezoelectric actuator, which is used
to modulate the length of the reference leg. The DUT is
mounted on a stationary structure. Each leg has adjustments
for static alignment.

As in point sampling, the electric fields on the DUT are
measured by using the linear EO, or Pockels, effect. A propa-
gating electrical transient is launched on the DUT when an
optical excitation pulse is applied to a biased, photoconductive
switch. An EO crystal having a high-reflectivity (HR) coating
on one side covers the region of interest with the coating in
intimate contact with the DUT. “Fringing” E-fields caused by
the propagating transient couple into the crystal to produce a
temporally and spatially variant refractive index.

The EO-induced index perturbation in the crystal alters the
phase of the linearly polarized optical probe as it traverses the
device leg of the interferometer. When recombined with an
unperturbed reference beam, an intensity pattern results that
corresponds to phase differences between the two legs of the
interferometer. If the reference beam is static, then changes in

intensity at each point can be attributed to spatial phase
variations in the crystal induced by the EO effect.

A video camera (DVC Corp., DVC-0A) having a low-
noise, frame-transfer charge-coupled device (CCD) (Texas
Instruments, TC-245) records the intensity pattern created by
the interferometer. The analog camera output is digitized by
a frame grabber (Matrox Corp., Pulsar) and stored on a per-
sonal computer (Pentium 133-MHz, PCI bus). Timing control
for modulation uses custom-built electronics (see Modula-
tion section).

Spatial resolution of the system is determined by the active
image area and number of discrete pixels in the image sensor.
Image (de)magnification can be adjusted by altering the posi-
tion of the relay lens and camera.

The CCD has 755 (8.5-µm) pixels horizontally (H) and
242 (19.75-µm) pixels vertically (V) for an active area of
6.4 mm (H) × 4.8 mm (V). Typical magnification is 4:1, giving
a measurement area of 1.6 mm (H) × 1.2 mm (V). The resulting
spatial resolution is 2.13 µm (H) × 4.9 µm (V), which is
comparable to point sampling. If desired, cylindrical lenses or
prisms could be used to correct the pixel aspect ratio.

It is possible to increase optical magnification to 8:1, then
digitally average 2 × 2-pixel cells to obtain 4:1 effective
magnification. This would reduce noise by 1/2; however, it
may prove disadvantageous since more photons from the
excitation source will be collected by the sensor [see also
Interferometer Operation section].

Important distinctions exist between the imager and scan-
ning point samplers. The imaged nodes must lie within a finite
rectangular region, whereas a scanning system can probe
random points over an extended area. Furthermore, the imager
measures all nodes simultaneously, whereas a scanning sam-
pler probes one node at a time.

Electro-Optic Interferometer
We present the reasons for choosing an interferometer and

discuss its operation. We begin by mathematically describing
the EO effect, and the relationship between the voltages present
on the DUT, fringing fields coupled into the crystal, and
resulting phase delay experienced by the optical probe. We
then use this information to estimate the temporal resolution of
the system. Following this discussion, we analyze the design in
Fig. 69.31 to estimate the expected system sensitivity.

Figure 69.31
Imaging system hardware: (A) Ti:sapphire laser, (B) high-frequency modu-
lator, (C) half-wave plate, (D) polarizing beam splitter, (E) optical delay
stage, (F) excitation beam fiber coupler, (G) spatial filter and probe beam
expander, (H) wedged beam splitter, (I) reference mirror on piezoelectric
actuator, (J) EO crystal on DUT, (K) polarizing filter, (L) relay lens and
aperture, and (M) CCD camera.
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The refractive index in an EO crystal is altered in the
presence of an electric field. The perturbed index n9 is depen-
dent on the field-free index n, field strength E, and Pockels
coefficients r. By applying the techniques of Ref. 7 to x-cut
LiTaO3 (<3 m> point group), a material commonly used for
EO sampling, we find (neglecting terms quadratic in field
strength Ey)

′ = − +( ) = +n n
n

r E r E n ny y
y

y z y y

3

22 132
∆ , (1a)

′ = − ( ) = +n n
n

r E n nz z
z

z z z

3

332
∆ . (1b)

Numeric subscripts are indices of the tensor elements, and y, z
subscripts are direction vectors in crystalline coordinates; z is
parallel to the optic axis. These equations show that the
refractive index along y is influenced by the electric fringing
fields directed along both y and z, whereas the index along z is
influenced only by fringing fields along z. It is also evident that
the optical probe polarization must be aligned to measure the
desired refractive index perturbation, while the optic axis of
the crystal must be aligned on the DUT such that the fringing
fields of interest maximize the index perturbation.

If we substitute values for LiTaO3
7 into Eqs. (1a) and (1b),

we find that ∆nz ≈ 4.4∆ny, and the contribution from Ey is
negligible. In point sampling, it is common (and convenient) to
measure the induced birefringence, which is the difference in
index perturbation along z and y, or

∆ ∆ ∆ ∆n n n nzy z y z= − ≈ 1 3. .

Since the refractive index change along z is greater than that
along y and greater than the induced birefringence, system
sensitivity will be maximized by measuring ∆nz. An interfer-
ometer was chosen for this purpose. [Note: EO materials from
other point groups (e.g., ZnTe, <43 m>) have greater sensitivity
when the induced birefringence is measured.]

Having determined that we wish to measure the refractive
index perturbation using an interferometer, we must consider
how it will be used. An interferometer is sensitive to phase
delays imposed on a propagating optical wavefront, which in
our case is the probe beam. As an optical beam traverses a
dielectric material, it suffers a phase delay ∆Γ, determined by
the refractive index n, wavelength λ, and material thickness X:

∆Γ = ( )∫
2

0

π
λ

n x dx
X

. (2)

We showed above that the refractive index was dependent upon
the electric fringing field, but we must also consider that the
fringing field is not uniform throughout the thickness of the
material. As a result, the refractive index is a function of depth
x, determined by the penetration depth of the fringing field into
the crystal.

Substituting Eq. (1b) into Eq. (2), we obtain a static phase
delay component Γ0 (independent of E fields):

Γ0
2= π
λ

n Xz , (3a)

and a dynamic phase delay attributed to the EO effect ∆ΓEO.
The interferometer measures ∆ΓEO, given by

∆ΓEO = ( )∫
π
λ

n r E x dxz z

X
3

33
0

. (3b)

The E-field distribution within the crystal depends upon the
test structure. For this example, consider a coplanar waveguide
on which we wish to probe the E-field at the center of the gap
g. In general, if a superstrate having the same relative dielectric
constant as the substrate (εsub) is placed on a coplanar struc-
ture, we would expect the fringing fields in the superstrate to
be confined to a depth comparable to the gap separating device
features. When the superstrate is the EO crystal (dielectric =
εEO), the depth of the fringing field, g9, is dependent upon the
ratio of the two dielectric constants; the confinement depth
becomes ′ ≅g gε εsub EO . The field strength decreases rapidly
inside the crystal, so we approximate the integral with the
product E gz

surface ′ , where Ez
surface  is the transverse E-field

magnitude at the surface of the crystal. We then obtain

∆ΓEO
sub

surface

EO
≅







π
λ

ε
ε

n r
gE

z
z3

33 , (3c)

or in words, the measured phase change at any point is propor-
tional to the E-field at that point. The voltage on the gap Vgap

is the product of the gap and the E-field:

V g Ez
gap surface= . (3d)
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Note that for a given value of ∆ΓEO, the voltage is independent
of the gap, whereas the field depends upon the gap. This can be
understood by considering that a device having a larger gap has
deeper fringing-field penetration in the crystal. The fields have
a longer interaction length with the probe; hence, the field
required to produce a given phase change is reduced.

Temporal resolution of the system is determined by the
largest of (1) response time of the EO material, or (2) probe-
pulse duration convolved with the fringing fields profile; this
convolution is approximately equal to the sum of the pulse
FWHM and the time of flight tfl  of an infinitely short pulse
through the fringing fields. The EO response is limited by
phonon resonance and for LiTaO3 is of the order of 10−14 s.8

The probe pulse is ≈100-fs FWHM and can be reduced to
≈50-fs FWHM using a pulse compressor. The optical path
length through the fringing fields is pl sub EO= ( )2 n g ε ε .
Time of flight t cf l pl= , with c = speed of light in vacuum.
For a coplanar waveguide fabricated on silicon (εsub = 11.9),
having g = 10 µm, and LiTaO3 (n ≈ 2.2, εEO = 43), we find
tfl  ≈ 40 fs. From these values, we expect (temporal resolution)
≈ (pulse FWHM + tfl ) = 140 fs, well below 1 ps.

Interferometer Operation
Now that we have described how Pockels effect alters the

phase of an optical probe beam, we discuss the interferometer
in detail. We begin with its intensity transfer function and
discuss the ideal case. We then consider factors that cause
deviations from ideal that reduce system sensitivity, and esti-
mate their magnitude. Finally, we consider how to optimize
system sensitivity given these constraints.

The normalized intensity measured by the detector,
I I Id = out ref , is the ratio of the output intensity from the
interferometer to the intensity present in the reference leg:

I
I

I
bd ≡ = +( ) + ( ) +out

ref
1 2α α δcos . (4)

Id depends on α = I IDUT ref , the normalized intensity in the
device leg, the phase difference δ between the E-field of the
optical probe in each leg, and normalized background illumi-
nation b. Using Eqs. (3a) and (3c) to expand δ, we get

δ = +( ) ≡2 20Γ ∆Γ ΓEO , (5)

where Γ0 was redefined to include both the static phase
difference governed by the differing lengths of the interferom-

eter legs, as well as the static phase delay of the EO crystal. The
factor of 2 results from using reflective sampling. The probe
passes through the fringing field two times, accumulating
twice the phase delay.

In an ideal interferometer α = 1 and b = 0, and Eq. (4)
reduces to

Id ∝ ( )cos ,2 Γ (6)

which is also the intensity transfer function used to describe
point sampling. As a result, all modulation and detection
principles described herein apply equally to a system such as
that in Ref. 2, wherein a variable retarder is used in place of the
quarter-wave plate or optical compensator. The variable re-
tarder would take on the modulation function of the piezoelectric
actuator, as discussed in the section entitled Modulation .

CCD’s have a finite electron well-capacity, and conse-
quently, sensitivity will be greatest when the ratio q/Q is
maximized, where q = number of electrons attributed to the EO
signal and Q = total number of electrons. Assuming that the
number of electrons in each pixel is linearly proportional to the
incident radiant flux,

Q Id∝ , (7a)

and

q I I Id d∝ ≡ −
=

∆
∆ΓEO

EO 0
, (7b)

where ∆IEO is the intensity contribution from the EO effect
alone. Combining Eqs. (4), (5), (7a), and (7b) yields

q

Q p
=

+( ) − ( )
+ +( )

cos cos

cos
,

2 2

2
0 0

0

Γ ∆Γ Γ
Γ ∆Γ
EO

EO
(8)

where

p
b≡ + +1

2

α
α

. (9)

In the small-signal limit, Eq. (8) becomes

q

Q
f p

Lim EO
EO∆Γ

Γ ∆Γ
→

= ( )
0

0, , (10a)
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where

f p
p

,
sin

cos
.Γ

Γ
Γ0
0

0

2 2

2
( ) ≡

( )
+ ( )













(10b)

Equation (10a) describes the fraction of electrons in each pixel
attributed to the EO effect. We now consider how to use this
information to optimize the system sensitivity.

Figure 69.32(a) presents a plot of Eq. (9), and Fig. 69.32(b)
shows f(p, Γ0) defined in Eq. (10b) for the nonideal case p =
1.05. From Fig. 69.32(b), we see that f(p, Γ0) has two points for
which the amplitude is a maximum. We wish to find Γ0

opt —
bias points for which this function is optimized. To do so, we
take the derivative of f(p, Γ0) with respect to Γ0, equate to
zero, and solve

Γ0
1 11

2
opt p p( ) = −( )− −cos . (11)

Equation (11), plotted in Fig. 69.32(c), shows a distinct Γ0 that
maximizes q/Q. Therefore, we wish to optically bias the
interferometer at this point, about which the small EO signal is
superimposed. We note that for an ideal interferometer p = 1,
giving Γ0 2opt = π  where the derivative of Eq. (6) is zero. This
conclusion is very different from wide-bandwidth detectors
used in point sampling that achieve maximum sensitivity when
Γ0 = π/4, where the derivative of Eq. (6) is maximized, as
explained in Ref. 2. In the general case of a nonideal interfer-

ometer, two solutions exist [as originally expected from
Fig. 69.32(b)], one on either side of π/2.

Substituting Eq. (11) into Eq. (10b), we find

f p
p p

f p, .Γ Γ Γ0 20 0

2

1
( ) =

−
≡ ( )= −

opt
opt (12)

The factor f opt (p) is also plotted in Fig. 69.32(c). It has the
greatest value for an ideal interferometer and decreases as we
depart from ideal.

Until now, we have ignored sources of optical phase-front
distortions to the probe beam. Each optical component has a
finite surface accuracy and refractive index inhomogeneities.
These inaccuracies are stationary in time, and spatially ran-
dom, so the cumulative error is the rms combination of all
components. These errors will make it impossible to achieve
optimum system sensitivity at every pixel simultaneously, but
two observations can be made:

1. As the region-of-interest (ROI) is decreased (within
diffraction limits), the magnitude of phase distortions will
decrease, and

2. As a system, sensitivity will be maximized when the aver-
age optical bias point in the ROI corresponds to the opti-
mum bias conditions.

Figure 69.32
(a) Parameter p(α, b) = 1 for an ideal interferometer and increases as (α, b) depart from ideal. (b) Sensitivity factor f(p, Γ0) for an arbitrary nonideal interfer-
ometer (p = 1.05) has two peaks, corresponding to optimum operating bias points Γ0

opt . (c) Optimum optical bias points Γ0
opt  and sensitivity factor fopt(p)

can be determined knowing p.
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We have shown that there exists an optimum bias point
about which we must modulate our signal. To determine this
bias point, we must understand the origins of α and b and
estimate their magnitudes.

In an ideal interferometer, the beam splitter would be
infinitely thin, so that reflections occur only at one surface.
Pellicle beam splitters are thin but are subject to acoustic and
mechanical vibrations, making them unsuitable for this appli-
cation. A thick beam splitter is more stable, but reflections
from the second surface must be eliminated. Coated optics are
an option, but we chose to eliminate unwanted reflections by
using a wedged window. The beam is incident at Brewster’s
angle at the first surface such that reflectivity of p-polarized
radiation is zero. The beam splitter then behaves ideally, i.e.,
α = 1.0.

Background illumination, factor b in Eq. (4), is radiation
collected by the detector that does not contribute to the desired
signal. Fresnel reflections occur at each dielectric interface
(window or lens), as in Fig. 69.33(a). Each transmitted beam is
the superposition of many reflections. Beams that experience
multiple reflections will be delayed more than the duration of
the probe pulse, so will not interfere. To estimate blens, we
compare the intensity of transmitted light delayed by more
than n1t to that delayed by exactly n1t. For a system of M
windows and lenses,

b R
M

lens = −( ) −
−

1 12 . (13)

Since system sensitivity decreases with increasing b, it is
advantageous to minimize the reflection coefficient R at each
optical element by using coated optics. A conservative esti-
mate for the system shown in Fig. 69.31 (not all optics shown)
having seven uncoated BK-7 windows (R = 0.04) gives
blens ≅ 1.2%.

Fresnel reflections occur also at the surface of the crystal.
Most EO materials used for sampling have a large refractive
index, giving large reflections. The following expression for
background contributions from the crystal, bEO, is evident
from Fig. 69.33(b):

b REO EO= − −( )−
1 1

2
. (14)

Reflections from the top surface of the crystal are potentially
the most detrimental to system performance. Uncoated

LiTaO3 has REO ≅ 14%, making bEO ≅ 26%; anti-reflection
(AR) coatings, which make REO ≅ 0.03, yield bEO ≅ 6%. REO
also effectively reduces α to α9 by

′ = −( ) = −( )α αI

I
R RDUT

ref
EO EO1 1

2 2
, (15)

since only a fraction of the incident pulse makes exactly one
round-trip through the crystal.

Uncoated LiTaO3 makes α9 = 0.74 α, whereas coated
LiTaO3 produces α9 = 0.94α. To minimize these detrimental
effects, the crystal requires a nearly perfect AR coating on the
first surface (REO = 0) and a perfect HR coating (R = 1) on the
second surface.

The final source of background is the light reflected by the
DUT from the fiber-coupled beam used to trigger the photo-
conductive switch. A conservative estimate assumes that the
fiber is positioned at the DUT and pointed directly toward the
interferometer beam splitter [Fig. 69.33(c)]. The results of this
analysis will be at least an order of magnitude too large because
the estimate neglects the following facts:

(1) the fiber is directed toward the DUT and will shadow
reflected light;

(2) the DUT will absorb incident photons;

(3) the polarizing filter will attenuate reflected (scattered)
light that is depolarized; and

(4) the photoconductive switch may be located outside the
image area.

From the above argument, the results of the following simpli-
fied analysis will be reduced by a factor of 10.

The divergence angle of the beam is determined by the fiber
diameter and wavelength. A fraction of the light is reflected off
the beam splitter toward the camera. The distance between the
relay lens and DUT is determined by the desired magnification
m and lens focal length f. The lens has a finite aperture and
collects only a fraction of the diverging beam from the fiber,
bfiber. Assuming a gaussian beam from the fiber tip, this
simplified approach yields

b
I R

I

D

Dfiber
ex bs

ref
erf≈

′




 , (16a)
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where

D

D

Dm

df m′
=

+( )
λ

2 1
(16b)

and where Iex = intensity of the excitation pulse (≈1 mW),
Iref ≈ 10 µW (for pixel saturation), Rbs = beam-splitter reflec-
tivity, erf( ) is the error function, D = lens-aperture diameter,
D9 = 1/e beam diameter at the lens, λ = wavelength, and d =
fiber-core diameter.

Clearly, Rbs and m should be minimized, and f should
be large. From Eqs. (16a) and (16b), typical operating condi-

Figure 69.33
Factors that degrade interferometer performance: (a) multiple reflections from windows and lenses [R = intensity reflection coefficient, T = intensity
transmission coefficient = (1−R)], (b) Fresnel reflections at the surface of the EO crystal, and (c) light escaping from excitation fiber.

tions give bfiber ≅ 13%, which we reduce to 1.3%, as dis-
cussed above.

We have considered several factors that contribute to the
nonideal terms α and b in the interferometer transfer function.
It is essential to use precision optics and minimize front-
surface reflections from the EO crystal to prevent system
degradation. Proper adjustment of the excitation beam inten-
sity and fiber placement will limit background contributions
from the excitation source. Finally, coated optics will reduce
multiple reflections from other system optics. For a well-
designed system having an AR-coated crystal, we obtain b =
bEO + bfiber + blens ≅ 0.06 + 0.012 + 0.013 = 0.085, and
α = 0.94, thus making p ≅ 1.044. This value for p will be used
in the remaining discussion.
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System Linearity and Sensitivity
Linearity of the measurement system can be derived from

the ratio of Eqs. (10a) and (8), where Γ0 is replaced with Γ0
opt ,

and ∆ΓEO is a small-signal perturbation about Γ0
opt . Evaluat-

ing linearity at p = 1.044, one can show that the measured
response is linear within ±5% for ∆ΓEO < 0 015.  rad; this is
more than adequate for expected signals.

We have obtained an expression for the optimum sensi-
tivity factor f opt(p) and numerical estimates of the parameter
p. The next step is to determine the measurement resolution of
the system given this information. First, we determine the
system dynamic range (DR) and minimum resolvable phase
change, then the voltage and E-field needed to produce this
phase change.

From Eq. (10), we can determine DRsignal if we assume
that the pixel is nearly saturated so that Q ≈ Qwell. The CCD
has an electronic noise-equivalent signal qeq = 30 electrons,
shot noise qshot = 40 electrons, and well capacity Qwell = 80 ×
103 electrons.9 Setting q q qnoise eq shot= +( ) =2 2 1 2 50 elec-
trons, we find

DRsignal
well

noise opt
EO

=






⋅
= ( )

20 log .
Q

q

q

Q q

Q
f p ∆Γ

(17)

For ∆ΓEO = ±0.015 rad (the limit of “linear” range) and
p = 1.044, we find f opt(p) = 6.25, and DRsignal = 43 dB.

The minimum detectable signal ∆ΓEO
min  is that which makes

q Q q Q= noise well :

∆ ΓEO
noise

well
opt

min ,= ( )






q

Q f p
(18)

which gives ∆ΓEO
min  = 100 µrad, corresponding to λ/6 × 104

resolution.

We relate ∆ΓEO
min  to the voltage necessary to produce it,

using Eqs. (3c) and (3d):

∆ ΓEO
sub

EO

gap,min min .≅






( )π
λ

ε
ε

n r Vz
3

33 (19)

The minimum detectable voltage Vgap,min is constant for any
(coplanar) gap geometry. Ez

surface,min is the minimum field,

which, if present at the surface of the crystal, could be resolved
by the system:

E
V

gz
surface,

gap,
min

min
.= (20)

When testing a device fabricated on silicon (εsub = 11.9)
using LiTaO3 (εEO = 43, r33 = 33 pm/V, nz = ne = 2.180),7

and λ = 800 nm, we find ∆ΓEO
min  = 3.7 × 10−4 Vgap,min. By

equating ∆ΓEO
min  to 100 µrad, Vgap,min = 270 mV, which

corresponds to 27 kV/m on a 10-µm gap.

This sensitivity is well suited to measurement of microwave
devices and complex transmission line structures. Several
enhancements can be made to improve suitability for digital
applications. A nonlinear organic salt known as DAST has εEO
= 7.0, Pockels coefficient r11 = 160 pm/V, and n = 2.460.10

From Eq. (19), this would increase sensitivity by a factor of
43. Cooling the sensor reduces shot noise so that qnoise ≅ qeq,
thus by Eq. (18), increasing sensitivity by a factor of 1.6. In
combination, these produce Vgap,min ≅ 4 mV, and Ez

surface,min

≅ 400 V/m.

Modulation
Having discussed the attributes of an integrating detector,

we now show how the signal is modulated about the desired
operating bias point. We first discuss how the signal is modu-
lated in each image and the timing required. We then discuss
the characteristics of a frame transfer sensor and how to use
these characteristics to our advantage.

Figure 69.34(a) is an expanded view of Eq. (6), about π/2.
In the absence of an electric field, points A and B have equal
intensity when the optical bias is adjusted to ±Γ0

opt  by displac-
ing the reference mirror. When an E-field is present on the
DUT, the resulting EO phase shift is added to the optical bias.
This causes the intensity at point A to increase to C, while that
at point B decreases to D. Analysis of the data is achieved by
subtracting field D from B, and C from A.

The data-acquisition system is synchronized to the camera’s
pixel and field clocks and acquires images with the timing
shown in Fig. 69.34(b). The electrical bias on the device’s
photoconductive switch is synchronously modulated at the
30-Hz camera field clock frequency, thus decreasing 1/f
noise (both laser and mechanical vibrations of the interferom-
eter). The reference mirror position is modulated at 1/2 the
bias frequency. A trigger pulse generated on the mutual rising
edge of bias and actuator signals triggers the digitization of
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Figure 69.34
Modulation: (a) expansion of Eq. (6) about an interferometric null showing EO modulation about ±Γ0

opt  bias points, (b) modulation and image capture
timing diagram.

four consecutive fields, corresponding to points C, A, D, B in
Fig. 69.34(a).

The frame transfer CCD has two discrete sensor regions: an
active-pixel site and a storage site of equal size. Each field is
acquired over a 1/60-s integration period. An advantage of
using a detector with a 1/60-s integration period is that 60-Hz
electrical noise will average to zero. During integration, the
active pixels integrate charge proportional to photon flux,
while electrons in the storage site are clocked to the output
amplifiers. During frame transfer, charges in the active pixels
are transferred vertically via “bucket brigade” into the storage
site. Charge transfer causes slight smearing due to transfer
inefficiency, and distortion occurs for charge packets that are
transferred through brightly illuminated pixels.

A high-speed modulator “gates” the laser “on” immediately
before and after alternate frame transfer cycles, and “off” at all
other times. This eliminates charge smearing during frame
transfer and reduces the effective laser- and vibration-noise
bandwidth significantly. The limiting speed for this modula-
tion is governed by the frame transfer period (1.27 ms for our
camera). If the laser is gated “on” for ~100 pulses, the effective
modulation frequency would be ~750 Hz.

Summary
We have described and analyzed an ultrafast EO imaging

system that uses an interferometer and CCD detector to map
2-D electric fields on an optoelectronic device. It is compa-
rable to an ultrafast sampling oscilloscope having more than
180,000 channels. Limitations caused by using an integrating
detector are reviewed, and optimum operating conditions are
identified. Techniques are presented that allow modulation of
the signals at 750 Hz, which will reduce sensitivity to laser and
mechanical 1/f noise. System sensitivity in the absence of laser
noise is estimated to be 270 mV, corresponding to 27 kV/m for
a 10-µm coplanar structure. These values make the system well
suited for testing microwave devices. Sensor cooling and the
use of alternative EO materials should improve sensitivity by
factors of 1.6 and 43, respectively, making the minimum
resolvable voltage 4 mV. The system would then be easily
capable of digital (e.g., CMOS) circuit evaluation.
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The measurement of fuel compression, specifically the den-
sity-radius product (ρR), is of fundamental importance in
analyzing ICF implosions. To probe the large values of ρR
anticipated for OMEGA (and NIF) experiments, nuclear diag-
nostics must be used.

Three ρR diagnostics are being developed for OMEGA.
They rely on detecting the following nuclear particles:
(1) energetic D and T ions (knock-ons) produced by colliding
14-MeV neutrons;1 (2) elastically scattered DT neutrons;2,3

and (3) tertiary DT neutrons.2,4 The starting point for generat-
ing each of these particles is the 14-MeV neutron produced in
DT fusion, i.e.,

D T MeV+ → + ( )α n 14 1. . (1)

A small percentage of these neutrons (typically less than
0.01% for ICF conditions) will scatter elastically from D or T
ions in the fuel (a prime indicates a scattered particle):

n n+ ( ) → ′ + ′ ′( )D or T D or T , (2)

where D9 will be produced in a continuous spectrum from 0 to
12.5 MeV and T9 in the range of 0 to 10.6 MeV, with the
remainder of the 14.1-MeV energy going to the scattered
neutron. The number of such scattering events per DT-fusion
neutron is directly proportional to the ρR of the fuel. This
forms the basis for two of the nuclear diagnostics under
development—knock-ons and elastically scattered neutrons:
(1) the techniques for detecting the D and T knock-ons that
were developed on the 24-beam OMEGA system will be
extended to accommodate the higher values of ρR expected in
future, near-term experiments (total target ρR ≤ 200 mg/cm2);
and (2) techniques for detecting the elastically scattered neu-
trons and separating that signal from the expected neutron
background will be investigated.

The third diagnostic involves reactions with the knock-on
D and T ions. As these ions pass through the fuel, there is a

Nuclear Diagnostics for High-Density Implosions

small probability that they will undergo an in-flight fusion
reaction with one of the thermal fuel ions:

′ ( ) + ( )
→ + ′′( )
D MeV T thermal

MeV

0 12 5

12 30

– .

– ,α n (3)

and similarly for the knock-on tritons, where n99 indicates a
neutron scattered by an already scattered D. Because the D and
T knock-ons are charged particles, they will be slowing down
as they fuse. This can complicate the interpretation of the
diagnostic signal, as the rate of slowing down depends on the
temperature in the fuel as well as the density. The number of
these high-energy neutrons from the tertiary reaction actually
measures the product (ρR) (ρR9), where R9 is either the radius
of the target or the range of the D or T knock-on ions, whichever
is smaller. The first factor of ρR comes from the production of
the knock-ons. Thus, for small ρR (OMEGA), the tertiary yield
varies as (ρR)2, and for large ρR (NIF), it is proportional to ρR.

This article presents more details about these three diag-
nostics, together with comments on where further develop-
ment is necessary. Two other nuclear diagnostics are under
consideration but will not be discussed here, because they
involve the additional complication of adding He3 to the target.
These two diagnostics use the D-He3 proton: the energy loss of
the 14.7-MeV proton from thermal D-He3 fusion can measure
the target ρR up to several hundred mg/cm2,1 and tertiary
protons from in-flight D-He3 fusion, using knock-on D or He3

ions, can measure the ρR of the He3 in the target.5 The detec-
tion of these protons from different directions can give
information about gross asymmetries of the compressed core.

Knock-Ons
The knock-on diagnostic was developed at LLE for the

24-beam OMEGA laser and used to diagnose implosions with
a fuel ρR up to ~30 mg/cm2 and with a comparable ρ∆R for
the glass shell around the fuel.6 For values of fuel-plus-shell ρR
in excess of 100 mg/cm2, the knock-on spectrum becomes
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substantially distorted due to significant slowing down of the
D and T ions as they pass through the target; this can introduce
some uncertainty in interpretation of the diagnostic signal. It is
important to spectrally resolve the high-energy portion of this
charged-particle signal, to separate the knock-ons from other
sources of energetic ions, and to determine how the knock-on
spectrum has been modified by slowing down in the target.
Gross spectral resolution was obtained on the 24-beam OMEGA
laser using stacked track detectors.1,6 Higher resolution will be
obtained in future OMEGA experiments using a charged-
particle spectrometer. This will extend the applicability of the
knock-on diagnostic to meet the needs of the OMEGA experi-
mental program for the first few years of operation.

To illustrate how the diagnostic can be used, Fig. 69.35
shows the calculated spectrum of knock-on deuterons for the
simple model of a hot DT core surrounded by a “cold”
(0.5-keV), denser CH shell. A characteristic feature of the
spectrum is a peak at high energies produced by the forward-
peaked cross section for scattering with 14-MeV neutrons.
(This peak contains ~16% of the deuteron knock-ons.) Fig-
ure 69.35 shows how the peak is shifted to lower energies due
to increased slowing down as the ρ∆R of the plastic shell

increases. [The energy loss in the fuel is relatively small in this
example because the fuel temperature is high and the ρR is
small (40 mg/cm2).] The peak changes position and shape but
remains well defined. By spectrally resolving this peak, it is
possible to obtain simultaneously two important pieces of
information about the compressed core: the position of the
peak determines the ρ∆R of the plastic shell, and the number of
knock-on deuterons in the peak determines the ρR of the fuel.
The fuel ρR is related to the number of deuterons in the peak
(ND) and the DT neutron yield (Y) by the following relation:

ρR N YD= 83 2g cm/ (4)

for equimolar DT. A similar relation is available for knock-on
tritons, but the more energetic deuterons can be used to diag-
nose higher values of ρR.

To facilitate measurement of the knock-on spectrum, a
charged-particle spectrometer7 is being developed at MIT for
OMEGA experiments. The spectrometer uses a 7.5-kG magnet
to momentum select the particles and deflect them from the
straight-line path followed by neutrons and x rays. The charged-
particle paths are determined from trajectory calculations. The
magnet has recently been tested at MIT using protons with
energies from 1 to 15 MeV. As depicted in Fig. 69.36, the
particles are deflected and then impinge onto a detector plane
where they are intercepted by a combination of charged-
coupled devices (CCD’s) and CR-39 plastic track detectors.
As demonstrated in recent experimental studies at MIT, the
CCD’s act as high-resolution energy detectors. Through the
combination of magnetic momentum selection and the energy
determination of the detectors, either CCD or track, the energy
and identity of each particle will be uniquely specified. From
these data, the spectra of all charged particles will be con-
structed, and vital information about the core conditions and
dynamics will be measured.

This spectrometer also forms the basis of a joint proposal
between MIT, LLE, and LLNL for a NIF diagnostic that will
measure both the implosion symmetry and the core ρR.5 This
makes use of very energetic tertiary protons (~31 MeV) that
can easily penetrate all plasmas envisaged for the NIF. For
example, the range of these protons is ~3 g/cm2, whereas the
ρR expected for a typical NIF capsule is ~1 g/cm2. Even for
some implosion scenarios simulated for OMEGA,5 situations
have been encountered where these tertiary protons could
prove particularly useful for determining core conditions,
beyond the range of applicability of the knock-on diagnostic.
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Figure 69.35
Calculated spectrum of knock-on deuterons escaping from compressed
targets, with constant fuel ρR (40 mg/cm2) and variable ρ∆R (1 to
200 mg/cm2) for a CH shell (of temperature 0.5 keV) surrounding the fuel.
The energy shift of the high-energy peak measures the ρ∆R of the shell,
and the number of deuterons in the peak determines the ρR of the fuel.
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Elastically Scattered Neutrons
The second reaction product from (n,D) and (n,T) scatter-

ing, namely the elastically scattered neutron, could be used to
diagnose all values of ρR of interest to ICF. Like the charged-
particle knock-ons, the number of these is directly proportional
to the ρR of the fuel but, since they are neutral, they do not slow
down in the target, and therefore this diagnostic is not limited
to small values of ρR.

To determine if the elastically scattered neutrons can be
separated from other sources of neutrons produced in the
target, Monte Carlo calculations have been performed to calcu-
late the spectrum of all neutrons emerging from the target. The
spectra for two values of ρR are shown in Fig. 69.37. The peak
at 14 MeV is, of course, the primary source from DT fusion.
The neutrons above 14 MeV are from tertiary reactions, dis-
cussed in the next section. In the range of 8 to 10 MeV, there are
contributions from many sources including (n,2n) reactions
with deuterium and T(T,2n)α reactions; it is not possible to
separate out the contribution from elastic scattering in this
region. However, in the range of 10 to 13 MeV, elastically
scattered neutrons completely dominate the spectrum. The
number of neutrons in this range is large enough to provide a
model-independent determination of ρR for all experiments
planned for OMEGA and NIF. (It should be noted that the two
curves shown in Fig. 69.37 are distinguishable because they are
both normalized to the primary yield.)

The main effort in neutron diagnostic development is to
devise a method for shielding against the effects of the primary
DT neutrons. These 14-MeV neutrons can lose energy as they
scatter from structural material around the target chamber or

within the diagnostic instrument itself, and they can enter the
10- to 13-MeV window that is being scanned for the elastically
scattered neutrons from the target.

Tertiary Neutrons
A significant portion of the tertiary neutron spectrum lies

above the 14-MeV primary source (Fig. 69.37). There are no
other reactions that can produce neutrons in the range of ~15
to 30 MeV. However, because this is a tertiary reaction, the
number of neutrons produced is several orders of magnitude
lower than for elastic scattering. For the NIF, yields are
sufficiently high that this should not be a problem. However,
for OMEGA experiments, it might be difficult to collect a
statistically useful number of tertiaries for targets with low
neutron yields. Time-of-flight detectors with a solid angle of
~10−5 should be adequate for the NIF. On OMEGA, it might
be necessary to use carbon activation foils that could increase
the detection solid angle by an order of magnitude. The carbon
foils would detect all neutrons with energy above ~18 MeV,
without spectral resolution. However, since there are no other
sources of neutrons in this range, spectral separation is
not necessary.

For OMEGA implosions, the “cold” part of the fuel will
have temperatures below ~1 keV throughout the implosion. In
this range, the slowing down of the high-energy knock-on
deuterons is relatively temperature independent, for the inter-
mediate step in tertiary-neutron production. Figure 69.38 shows
the expected ratio of tertiary neutrons (detected by a carbon
foil) to the primary DT fusion yield as a function of ρR,
assuming temperatures of 0.5 keV and 1 keV. The neutron ratio
determines ρR to within ±5% for these conditions. Superim-
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posed on Fig. 69.38 are results from a full hydrodynamic
simulation of an OMEGA implosion showing how the neutron
ratio varies with the neutron-weighted ρR at different times
during the implosion. The neutron ratio varies roughly as
(ρR)2, as the range of the knock-on deuterons and tritons is
larger than or comparable to the radius of the target.
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Calculated spectrum of neutrons escaping from
a compressed target for two values of ρR. In the
energy range between 10 MeV and 13 MeV,
elastically scattered neutrons dominate; above
15 MeV, only tertiary neutrons contribute.

For a burning NIF target, the temperatures will be consider-
ably higher and the temperature dependence of the diagnostic
will be much larger. Uncertainties of interpretation due to this
temperature sensitivity can be reduced by a detailed analysis of
the tertiary spectrum using a neutron time-of-flight detector.



NUCLEAR DIAGNOSTICS FOR HIGH-DENSITY IMPLOSIONS

50 LLE Review, Volume 69

ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy Office of

Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-
92SF19460, the University of Rochester, and the New York State Energy
Research and Development Authority. The support of DOE does not consti-
tute an endorsement by DOE of the views expressed in this article.

REFERENCES

1. S. Skupsky and S. Kacenjar, J. Appl. Phys. 52, 2608 (1981).

2. H. Azechi, M. D. Cable, and R. O. Stapf, Laser Part. Beams 9,
119 (1991).

3. S. Cremer and S. Skupsky, “Diagnosing High-ρR Implosions Using
Elastically Scattered DT Neutrons,” presented at the 26th Anomalous
Absorption Conference, Fairbanks, AK, 26–30 August 1996.

4. D. R. Welch, H. Kislev, and G. H. Miley, Rev. Sci. Instrum. 59,
610 (1988).

5. R. D. Petrasso, C. K. Li, M. D. Cable, S. M. Pollaine, S. W. Haan, T. P.
Bernat, J. D. Kilkenny, S. Cremer, J. P. Knauer, C. P. Verdon, and R. L.
Kremens, Phys. Rev. Lett. 77, 2718 (1996).

6. R. L. McCrory, J. M. Soures, C. P. Verdon, F. J. Marshall, S. A. Letzring,
S. Skupsky, T. J. Kessler, R. L. Kremens, J. P. Knauer, H. Kim, J.
Delettrez, R. L. Keck, and D. K. Bradley, Nature 335, 225 (1988).

7. D. G. Hicks, C. K. Li, R. D. Petrasso, F. H. Seguin, B. E. Burke, J. P.
Knauer, S. Cremer, R. L. Kremens, M. D. Cable, and T. W. Phillips,
“Design of an Electronic Charged Particle Spectrometer to Measure
(ρR) on Inertial Fusion Experiments,” to be published in the Review
 of Scientific Instruments.



LLE Review, Volume 69

PUBLICATIONS AND CONFERENCE PRESENTATIONS

Publications

Publications and Conference Presentations

K. L. Baker, R. P. Drake, B. S. Bauer, K. G. Estabrook, A. M.
Rubenchik, C. Labaune, H. A. Baldis, N. Renard, S. D. Baton,
E. Schifano, A. Michard, W. Seka, and R. E. Bahr, “Thomson
Scattering Measurements of the Langmuir Wave Spectra Re-
sulting from Stimulated Raman Scattering,” Phys. Rev. Lett.
77, 67 (1996).

S.-H. Chen, J. C. Mastrangelo, and H. Shi, “Electrolumines-
cent Diodes Using Cyclohexane-Based Glass-Forming
Liquid Crystals and Their Analogues,” in Liquid Crystals for
Advanced Technologies, edited by T. J. Bunning, S.-H. Chen,
W. Hawthorne, N. Koide, and T. Kajiyama, Materials
Research Society Symposium Proceedings (Materials Re-
search Society, Pittsburgh, PA, 1996), Vol. 425, pp. 233–238.

S.-H. Chen, H. Shi, B. M. Conger, J. C. Mastrangelo, and T.
Tsutsui, “Novel Vitrifiable Liquid Crystals as Optical Materi-
als,” Adv. Mater. 8, 998 (1996).

S.-H. Chen, H. Shi, B. M. Conger, D. Katsis, and J. C.
Mastrangelo, “Novel Vitrified Liquid Crystals and Potential
Applications,” in Liquid Crystals for Advanced Technologies,
edited by T. J. Bunning, S.-H. Chen, W. Hawthorne, N. Koide,
and T. Kajiyama, Materials Research Society Symposium
Proceedings (Materials Research Society, Pittsburgh, PA,
1996), Vol. 425, pp. 13–18.

S.-H. Chen, H. Shi, and J. C. Mastrangelo “Use of Glass-
Forming Liquid Crystal Materials for Electroluminescent
Diodes,” in Liquid Crystals for Advanced Technologies,
edited by T. J. Bunning, S.-H. Chen, W. Hawthorne, N. Koide,
and T. Kajiyama, Materials Research Society Symposium
Proceedings (Materials Research Society, Pittsburgh, PA,
1996), Vol. 425, pp. 225–232.

B. M. Conger, H. Shi, S.-H. Chen, and T. Tsutsui, “Polarized
Fluorescence from Vitrified Liquid Crystalline Films,” in Liq-

uid Crystals for Advanced Technologies, edited by T. J.
Bunning, S.-H. Chen, W. Hawthorne, N. Koide, and T. Kaji-
yama, Materials Research Society Symposium Proceedings
(Materials Research Society, Pittsburgh, PA, 1996), Vol. 425,
pp. 239–244.

V. N. Goncharov, R. Betti, R. L. McCrory, and C. P. Verdon,
“Self-Consistent Stability Analysis of Ablation Fronts with
Small Froude Numbers,” Phys. Plasmas 3, 4665 (1996).

J. C. Mastrangelo, S.-H. Chen, T. N. Blanton, and A. Bashir-
Hashemi, “Vitrification and Morphological Stability of
Liquid Crystals,” in Liquid Crystals for Advanced Technolo-
gies, edited by T. J. Bunning, S.-H. Chen, W. Hawthorne, N.
Koide, and T. Kajiyama, Materials Research Society Sympo-
sium Proceedings (Materials Research Society, Pittsburgh,
PA, 1996), Vol. 425, pp. 19–25.

C. J. McKinstrie and E. J. Turano, “Spatiotemporal Evolution
of Parametric Instabilities Driven by Short Laser Pulses: One-
Dimensional Analysis,”  Phys. Plasmas 3, 4683 (1996).

A. V. Okishev, M. D. Skeldon, S. A. Letzring, W. R. Donaldson,
A. Babushkin, and W. Seka, “The Pulse-Shaping System for
the 60-Beam, 30-kJ (UV) OMEGA Laser,” in Superintense
Laser Fields, edited by A. A. Andreev and V. M. Gordienko
(SPIE, Bellingham, WA, 1995), Vol. 2770, pp. 10–17.

H. Shi, D. Katsis, S.-H. Chen, M. E. De Rosa, W. W. Adams,
and T. J. Bunning,  “Dynamics of Defect Annihilation in
Vitrified Liquid Crystalline (VLC) Thin Films Upon Thermal
Annealing,” in Liquid Crystals for Advanced Technologies,
edited by T. J. Bunning, S.-H. Chen, W. Hawthorne, N. Koide,
and T. Kajiyama, Materials Research Society Symposium
Proceedings (Materials Research Society, Pittsburgh, PA,
1996), Vol. 425, pp. 27–32.



PUBLICATIONS AND CONFERENCE PRESENTATIONS

LLE Review, Volume 69

Forthcoming Publications

H. Shi and S.-H. Chen, “Theory of Circularly Polarized Light
Emission from Chiral Nematic Liquid Crystalline Films,” in
Liquid Crystals for Advanced Technologies, edited by T. J.
Bunning, S.-H. Chen, W. Hawthorne, N. Koide, and T. Kaji-
yama, Materials Research Society Symposium Proceedings
(Materials Research Society, Pittsburgh, PA, 1996), Vol. 425,
pp. 245–251.

B. Yaakobi, F. J. Marshall, and R. Epstein, “High Temperature
of Laser-Compressed Shells Measured with Kr34+ and Kr35+

X-Ray Lines,” Phys. Rev. E 54, 5848 (1996).

S. Alexandrou, C.-C. Wang, M. Currie, R. Sobolewski, and
T. Y. Hsiang, “Characterization of Coplanar Transmission
Lines at Subterahertz Frequencies,” to be published in IEEE
Transactions on Microwave Theory and Techniques.

E. L. Alfonso, S.-H. Chen, M. D. Wittman, S. Papernov, and
D. Harding, “A Parametric Study of Microencapsulation Ap-
proach to the Preparation of Polystyrene Shells,” to be pub-
lished in Polymer.

R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon,
“Linear Theory of the Ablative Rayleigh-Taylor Instability,”
to be published in the Proceedings of the 24th ECLIM,
Madrid, Spain, 3–7 June 1996.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P.
Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks,
S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse,
W. Seka, J. M. Soures, and C. P. Verdon, “Initial Performance
Results of the OMEGA Laser System,” to be published in
Optics Communications.

J. L. Chaloupka, T. J. Kessler, and D. D. Meyerhofer, “A
Single-Beam, Ponderomotive-Optical Trap for Free Electrons
and Neutral Atoms,” to be published in Optics Letters.

S.-H. Chen, J. C. Mastrangelo, H. Shi, T. N. Blanton, and A.
Bashir-Hashemi, “Novel Glass-Forming Organic Materials. 3.
Cubane with Pendant Nematogens, Carbazole, and Disperse
Red 1,” to be published in Macromolecules.

S.-H. Chen, H. Shi, J. C. Mastrangelo, and J. J. Ou, “Thermo-
tropic Chiral Nematic Side-Chain Polymers and Cyclic
Oligomers,” to be published in Progress in Polymer Science.

A. V. Chirokikh, W. Seka, A. Simon, and R. S. Craxton,
“Brillouin Scattering in Long-Scale-Length Laser Plasmas,”
to be published in Physics of Plasmas.

B. DeMarco, C. W. Barnes, K. Kearney, and R. L. Kremens,
“Neutron Yield Measurement on the OMEGA Laser System,”
to be published in the Review of Scientific Instruments.

R. Epstein, “Properties of the Speckle of Focused, Phase-
Converted Laser Beams and the Reduction of Time-
Averaged Irradiation Nonuniformity in Laser-Driven Plasmas
due to Target Ablation,” to be published in the Journal of
Applied Physics.

P. M. Fauchet, Ju. V. Vandyshev, Z. Xu, C. W. Rella, H. A.
Schwettman, and G. W. Wicks, “Mid-Infrared Femtosecond
Spectroscopy of Intersubband Hot-Hole Relaxation in Quan-
tum Wells,” to be published in the Proceedings of OSA’s
Tenth International Topical Meeting on Ultrafast Phenomena,
San Diego, CA, 28 May–1 June 1996.

P. M. Fauchet, “Photoluminescence and Electroluminescence
from Porous Silicon,” to be published in the Journal of
Photoluminescence (invited).

P. M. Fauchet, “Porous Silicon: Photoluminescence and Elec-
troluminescent Devices,” to be published in the Light Emission
in Silicon, Semiconductors, and Semimetals Series.

D. Fried, R. E. Glena, J. D. B. Featherstone, and W. Seka,
“Permanent and Transient Changes in the Reflectance of CO2
Laser-Irradiated Dental Hard Tissues at λ = 9.3, 9.6, 10.3, and
10.6 µm and at Fluences between 1–20 J/cm2,” to be published
in Lasers in Surgery and Medicine.



LLE Review, Volume 69

PUBLICATIONS AND CONFERENCE PRESENTATIONS

V. N. Goncharov and R. Betti, “Growth Rate of the Ablative
Rayleigh-Taylor Instability for Indirect-Drive ICF,” to be
published in Physics of Plasmas.

M. J. Guardalben, “Canoscopic Alignment Methods for Bire-
fringent Optical Elements in Fusion Lasers,” to be published
in Optics & Photonics News.

O. E. Hanuch, V. B. Agrawal, S. Papernov, M. delCerro, and
J. V. Aquavella, “Posterior Capsular Polishing with the
Nd:YLF Picosecond Laser: Model Eye Study,” to be pub-
lished in Investigative Ophthalmology.

D. Jacobs-Perkins, M. Currie, C.-C. Wang, C. Williams, W. R.
Donaldson, R. Sobolewski, and T. Y. Hsiang, “Subpico-
second Imaging System Based on Electro-Optic Effect,” to be
published in the IEEE Journal on Selected Topics in
Quantum Electronics.

J. H. Kelly, T. R. Boehly, J. M. Soures, D. L. Brown, R. Boni,
R. S. Craxton, R. L. Keck, T. J. Kessler, R. L. Kremens, S. A.
Kumpan, S. A. Letzring, S. J. Loucks, R. L. McCrory, S. F. B.
Morse, W. Seka, S. Skupsky, and C. P. Verdon, “The Acti-
vation of the Upgraded OMEGA Laser at the University of
Rochester,” to be published in the SPIE Proceedings of the 1st
Annual International Conference on Solid-State Lasers for
Application to Inertial Confinement Fusion (ICF), Monterey,
CA, 30 May–2 June 1995.

J. H. Kelly, T. R. Boehly, J. M. Soures, D. L. Brown, R. Boni,
R. S. Craxton, R. L. Keck, T. J. Kessler, R. Kremens, S. A.
Kumpan, S. A. Letzring, S. J. Loucks, R. L. McCrory, S. F. B.
Morse, W. Seka, S. Skupsky, and C. P. Verdon, “The Acti-
vation of the Upgraded OMEGA Laser at the University of
Rochester,” to be published in the SPIE Proceedings of the
15th International Conference on Coherent and Nonlinear
Optics, St. Petersburg, Russia, 27 June–1 July 1995.

O. A. Konoplev and D. D. Meyerhofer, “Cancellation of B-
Integral Accumulation in CPA Lasers,” to be published in the
Proceedings of OSA’s Tenth International Topical Meeting on
Ultrafast Phenomena, San Diego, CA 28 May–1 June 1996.

K. S. Lebedev, E. A. Magulariya, S. G. Lukishova, S. V.
Belyaev, N. V. Malimonenko, and A. W. Schmid, “Reflective
Nonlinearities of Nonabsorbing Chiral Liquid Crystals:
Frustration of Selective Reflection by Powerful Laser Radia-
tion,” to be published in the Bulletin of the American
Physical Society.

M. Lindgren, M. Currie, C. Williams, T. Y. Hsiang, P. M.
Fauchet, S. H. Moffat, R. A. Hughes, J. S. Preston, and F. A.
Hegmann, “Ultrafast Photoresponse and Pulse Propagation
in High-Tc Superconducting Y-Ba-Cu-O Thin-Film Devices,”
to be published in the IEEE Journal on Selected Topics in
Quantum Electronics.

M. Lindgren, M. Currie, C. Williams, T. Y. Hsiang, P. M.
Fauchet, R. Sobolewski, S. H. Moffat, R. A. Hughes, J. S.
Preston, and F. A. Hegmann, “Intrinsic Photoresponse of a
Y-Ba-Cu-O Superconductor,” to be published in Physical Re-
view Letters.

S. G. Lukishova, S. V. Belyaev, K. S. Lebedev, E. A. Magu-
lariya, A. W. Schmid, and N. V. Malimonenko, “cw and
High-Repetition-Rate Lasing in Nd:YAG Resonators with
Chiral-Nematic Liquid-Crystal Mirrors: A Study of Non-
linear Responses,” to be published in Quantum Electronics.

S. G. Lukishova, S. V. Belyaev, K. S. Lebedev, E. A. Magu-
lariya, A. W. Schmid, and N. V. Malimonenko, “Nonlinear
Bleaching in the Selective Reflection of Nonabsorbing
Chiral-Nematic Liquid-Crystal Thin Films,” to be published in
JETP Letters and in Molecular Crystals and Liquid Crystals.

F. J. Marshall and J. A. Oertel, “A Framed Monochromatic
X-Ray Microscope for ICF,” to be published in the Review of
Scientific Instruments.

J. C. Mastrangelo and S.-H. Chen, “Novel Glass-Forming
Organic Materials. 2. Structure and Fluorescence of Pyrene-
and Carbazole-Containing Cyclohexane, Bicyclooctene, and
Adamantane,” to be published in Chemistry of Materials.

S. M. McCormack, D. Fried, J. D. B. Featherstone, R. E.
Glena, and W. Seka, “Scanning Electron Microscope Observa-
tions of CO2 Laser Effects on Dental Enamel,” to be published
in the Journal of Dental Research.

R. L. McCrory, “The LLE Direct-Drive Target Physics
Experimental Program: First Year of ICF Experiments on
OMEGA,” to be published in the Proceedings of the 24th
ECLIM, Madrid, Spain, 3–7 June 1996 (invited).

C. J. McKinstrie, V. A. Smalyuk, R. E. Giacone, and H. X. Vu,
“Power Transfer between Crossed Laser Beams and the
Associated Frequency Cascade,” to be published in Physical
Review E.



PUBLICATIONS AND CONFERENCE PRESENTATIONS

LLE Review, Volume 69

A. V. Okishev and W. Seka, “Diode-Pumped Nd:YLF Master
Oscillator for the 30-kJ (UV), 60-Beam OMEGA Laser
Facility,” to be published in the IEEE Journal of Selected
Topics in Quantum Electronics.

A. V. Okishev and W. Seka, “Diode-Pumped Single-Frequency
Nd:YLF Laser for the 60-Beam OMEGA Laser Pulse-
Shaping System,” to be published in Solid State Lasers VI.

R. D. Petrasso, C. K. Li, M. D. Cable, S. M. Pollaine, S. W.
Haan, T. P. Bernat, J. D. Kilkenny, S. Cremer, J. P. Knauer,
C. P. Verdon, and R. L. Kremens, “Implosion Symmetry and
ρR Measurements of the National Ignition Facility from Na-
scent 31-MeV Tertiary Protons,” to be published in Physical
Review Letters.

J. Z. Roach, A. Ninkov, S. W. Swales, and T. Morris, “Design
and Evaluation of a Screen CCD Imaging System,” to be
published in Optical Engineering.

J. Z. Roach and S. W. Swales, “A Network-Based Imaging
System for the OMEGA Laser System,” to be published in
SPIE’s Proceedings of the European Symposium on Lasers,
Optics, and Vision for Productivity in Manufacturing I,
Micropolis, Besangon, France, 10–14 June 1996.

A. W. Schmid, T. J. Kessler, S. Papernov, and J. Barone, “Low-
Surface-Energy Photoresist as a Medium for Optical
Replication,” to be published in Applied Physics Letters.

H. Shi, B. M. Conger, and S.-H. Chen, “Circularly Polarized
Fluorescence from Chiral Nematic Liquid Crystalline Films:
Theory and Experiment,” to be published in Liquid Crystals.

M. J. Shoup III, J. H. Kelly, and D. L. Smith, “Design and
Testing of a Large-Aperture, High-Gain, Brewster’s-Angle
Zigzag Nd:Glass Slab Amplifier,” to be published in
Applied Optics.

A. Simon, “Comparison Between SBS Theories and Experi-
ment,” to be published in the Proceedings of the LaJolla
Summer School ’95, Plasma Physics and Technology (AIP).

J. M. Soures, “Inertial Fusion Research Using the OMEGA
Laser Facility,” to be published in Physics Today.

J. M. Soures, S. J. Loucks, R. L. McCrory, C. P. Verdon, A.
Babushkin, R. E. Bahr, T. R. Boehly, R. Boni, D. K. Bradley,

D. L. Brown, J. A. Delettrez, R. S. Craxton, W. R. Donaldson,
R. Epstein, R. Gram, D. R. Harding, P. A. Jaanimagi, S. D.
Jacobs, K. Kearney, R. L. Keck, J. H. Kelly, T. J. Kessler, R. L.
Kremens, J. P. Knauer, S. A. Letzring, D. J. Lonobile, L. D.
Lund, F. J. Marshall, P. W. McKenty, D. D. Meyerhofer, S. F.
B. Morse, A. Okishev, S. Papernov, G. Pien, W. Seka, R. W.
Short, M. J. Shoup, III, M. D. Skeldon, S. Skupsky, A. W.
Schmid, D. J. Smith, S. Swales, M. D. Wittman, and B.
Yaakobi, “The Role of the Laboratory for Laser Energetics in
the National Ignition Facility Project,” to be published in
Fusion Technology.

E. A. Startsev and C. J. McKinstrie, “Multiple Scale Derivation
of the Relativistic Ponderomotive Force,” to be published in
Physical Review E.

M. D. Wittman, R. Q. Gram, H. Kim, C. K. Immesoete, S. G.
Noyes, and S. Scarantino, “Increased Retention Time for
Hydrogen and Other Gases by Polymer Shells Using Opti-
cally Transparent Aluminum Layers,” to be published in the
Journal of Vacuum Science and Technology.

W. Xiong, Y. Kostoulas, X. Weng, P. M. Fauchet, and R.
Sobolewski, “Femtosecond Study of the Electronic Structure
in Semiconducting Y-Ba-Cu-O,” to be published in Physical
Review B.

Z. Xu, Ju. V. Vandyshev, P. M. Fauchet, C. W. Rella, H. A.
Schwettman, and C. C. Tsai, “Ultrafast Excitation and De-
excitation of Local Vibrational Modes in a Solid Matrix: The
Si-H Bond in Amorphous Silicon,” to be published in the
Proceedings of OSA’s Tenth International Topical Meeting on
Ultrafast Phenomena, San Diego, CA, 28 May–1 June 1996.

B. Yaakobi, F. J. Marshall, and J. A. Delettrez, “Abel Inver-
sion of Cryogenic Laser Target Images,” to be published in
Optics Communications.

J. D. Zuegel and W. Seka, “Direct Measurements of Lower-
Level Lifetime in Nd:YLF,” to be published in the Bulletin of
the American Physical Society.

J. D. Zuegel and W. Seka, “Upconversion and Reduced 4F3/2
Upper-State Lifetime in Intensely Pumped Nd:YLF,” to be
published in Optics Letters.



LLE Review, Volume 69

PUBLICATIONS AND CONFERENCE PRESENTATIONS

Conference Presentations

T. R. Boehly, R. L. McCrory, S. J. Loucks, J. M. Soures, C. P.
Verdon, A. Babushkin, R. E. Bahr, R. Boni, D. K. Bradley, D.
L. Brown, R. S. Craxton, J. A. Delettrez, W. R. Donaldson,
R. Epstein, P. A. Jaanimagi, S. D. Jacobs, K. Kearney, R. L.
Keck, J. H. Kelly, T. J. Kessler, R. L. Kremens, J. P. Knauer, S.
A. Kumpan, S. A. Letzring, D. J. Lonobile, L. D. Lund, F. J.
Marshall, P. W. McKenty, D. D. Meyerhofer, S. F. B. Morse,
A. Okishev, S. Papernov, G. Pien, W. Seka, R. Short, M. J.
Shoup, III, M. Skeldon, S. Skupsky, A. W. Schmid, D. J.
Smith, S. Swales, M. Wittman, and B. Yaakobi, “The First
Year of ICF Experiments on OMEGA — A 60-Beam,
60-TW Laser System,” 16th IAEA Fusion Energy Confer-
ence, Montreal, Canada, 7–11 October 1996.

The following presentations were made at the XXVII Annual
Symposium on Optical Materials for High Power Lasers,
Boulder, CO, 7–9 October 1996:

J. F. Anzellotti, D. J. Smith, R. J. Sczupak, and Z. R. Chrzan,
“Stress and Environmental Shift Characteristics of HfO2/
SiO2 Multilayer Coatings.”

S. Papernov and A. W. Schmid, “Heat Transfer from Localized
Absorbing Defects to the Host Coating Material in HfO2/
SiO2 Multilayer Systems.”

A. L. Rigatti and D. J. Smith, “Status of Optics on the OMEGA
Laser System after 18 Months of Operation.”

D. J. Smith, J. F. Anzellotti, S. Papernov, and Z. R. Chrzan,
“High Laser-Induced-Damage Threshold Polarizer Coatings
for 1054 nm.”

The following presentations were made at the OSA Annual
Meeting/ILS-XII, Rochester, NY, 20–25 October 1996:

M. S. Adams and D. D. Meyerhofer, “Near Field and Spatial
Coherence of the Third Harmonic Produced in a Noble
Gas Target.”

J. L. Chaloupka and D. D. Meyerhofer, “Second-Harmonic
Generation from Oscillating Free Electrons in a Laser Focus.”

S. D. Jacobs, “Producing Aspheres with Magnetorheological
Finishing.”

T. J. Kessler, L. S. Iwan, J. Barone, C. Kellogg, and W. P. Castle,
“Optic Fabrication Using Photographic Lithography.”

O. A. Konoplev and D. D. Meyerhofer, “Cancellation of the B-
Integral for CPA Lasers.”

E. M. Korenic, S. D. Jacobs, S. M. Faris, and L. Li, “Colorim-
etry of Cholesteric Liquid Crystals.”

K. S. Lebedev, E. A. Magulariya, S. G. Lukishova, S. V.
Belyaev, N. V. Malimonenko, and A. W. Schmid, “Reflective
Nonlinearities of Nonabsorbing Chiral Liquid Crystals: Frus-
tration of Selective Reflection by Powerful Laser Radiation.”

Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of Continu-
ous Surface-Relief Phase Plates by Simulated Annealing to
Achieve Control of Focal Plane Irradiance.”

D. D. Meyerhofer, J. P. Knauer, S. J. McNaught, and C. I.
Moore, “Observation of Relativistic Mass Shift Effects during
High-Intensity Laser-Electron Interactions.”

L. Zheng and D. D. Meyerhofer, “Self- and Cross-Phase
Modulation Coefficients in KDP Crystals Measured by a Z-
Scan Technique.”

The following presentations were made at the Second
Annual International Conference on Solid State Lasers for
Application to Inertial Confinement Fusion (ICF), Paris,
France, 22–25 October 1996:

T. R. Boehly, R. L. Keck, C. Kellogg, J. H. Kelly, T. J. Kessler,
J. P. Knauer, Y. Lin, D. D. Meyerhofer, W. Seka, S. Skupsky, V.
A. Smalyuk, S. F. B. Morse, and J. M. Soures, “Demonstration
of Three Enhancements to the Uniformity of OMEGA:
2-D SSD, New DPP’s, and DPR’s.”

T. J. Kessler, Y. Lin, L. S. Iwan, W. P. Castle, C. Kellogg, J.
Barone, E. Kowaluk, A. W. Schmid, K. L. Marshall, D. J.
Smith, A. L. Rigatti, J. Warner, and A. R. Staley, “Laser Phase
Conversion Using Continuous Distributed Phase Plates.”



PUBLICATIONS AND CONFERENCE PRESENTATIONS

LLE Review, Volume 69

W. Seka, J. H. Kelly, S. F. B. Morse, J. M. Soures, M. D.
Skeldon, A. Okishev, A. Babushkin, R. L. Keck, and R. G.
Roides, “OMEGA Laser Performance with Pulse Shaping.”

M. D. Skeldon, A. Babushkin, J. D. Zuegel, R. L. Keck,
A. Okishev, and W. Seka, “Modeling of an Actively Stabi-
lized Regenerative Amplifier for OMEGA Pulse-Shaping
Applications.”

The following presentations were made at the 22nd Interna-
tional Congress on High-Speed Photography and Photonics,
Santa Fe, NM, 27 October–1 November 1996:

A. Babushkin, W. Seka, S. A. Letzring, W. Bittle, M. Labuzeta,
M. Miller, and R. G. Roides, “Multicolor Fiducial Laser for
Streak Cameras and Optical Diagnostics for the OMEGA
Laser System.”

D. K. Bradley and P. M. Bell, “Implementation of 30-ps
Temporal Resolution Imaging on the OMEGA Laser System.”

The following presentations were made at the Superabrasives
Technology Meeting, 7–8 November 1996, Livermore, CA:

B. E. Gillman, Y. Zhou, and S. D. Jacobs, “Coolant/Tool
Interactions in Deterministic Microgrinding of Glass.”

J. C. Lambropoulos, Y. Zhou, P. D. Funkenbusch, B. Gillman,
and D. Golini, “Brittleness and Grindability of Brittle
Workpieces.”

The following presentations were made at the 38th Annual
Meeting, APS Division of Plasma Physics, 11–15 November
1996, Denver, CO:

R. Betti and J. P. Freidberg, “Shape, Pressure, and Kinetic
Effects on the Resistive Wall Mode in Rotating Plasmas.”

T. R. Boehly, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley,
R. L. Keck, J. A. Delettrez, V. A. Smalyuk, J. M. Soures, and
C. P. Verdon, “Laser Imprinting Studies Using Multiple-
UV-Beam Irradiation of Planar Targets.”

D. K. Bradley, J. A. Delettrez, and P. A. Jaanimagi, “Initial Mix
Experiments on the 60-Beam OMEGA Laser System.”

R. S. Craxton, J. D. Schnittman, and S. M. Pollaine, “Unifor-
mity in Tetrahedral Hohlraums.”

J. A. Delettrez, D. K. Bradley, and C. P. Verdon, “Modeling of
Mix Due to the Rayleigh-Taylor Instability in Burnthrough
Experiments Using the One-Dimensional Hydrodynamic
Code LILAC.”

R. Epstein, J. A. Delettrez, D. K. Bradley, C. P. Verdon, U.
Alon, and D. Shvarts, “Simulations in One Dimension of
Unstable Mix in the Ablation Region in Laser-Driven
Plasmas.”

Y. Fisher, T. R. Boehly, D. K. Bradley, J. A. Delettrez, D.
Harding, and D. D. Meyerhofer, “ ‘Shine-Through’ Experi-
ments Using 50-ps Laser Pulses.”

A. C. Gaeris, Y. Fisher, J. A. Delettrez, and D. D. Meyerhofer,
“Brillouin Scattering of Picosecond Laser Pulses in Pre-
formed, Short-Scale-Length Plasmas.”

V. Goncharov, R. Epstein, R. Betti, R. L. McCrory, and C. P.
Verdon, “Feedthrough and Spatial-Temporal Evolution of the
Ablative Rayleigh-Taylor Instability in ICF.”

A. V. Kanaev, C. J. McKinstrie, and J. S. Li, “Spatiotemporal
Interaction of Crossed Laser Beams.”

J. P. Knauer, “OMEGA Experiments to Characterize the
Rayleigh-Taylor Instability with Planar Foils.”

J. P. Knauer, D. D. Meyerhofer, T. R. Boehly, D. Ofer, C. P.
Verdon, D. K. Bradley, P. W. McKenty, and V. A. Smalyuk,
“Initial Single-Mode Rayleigh-Taylor Growth Rates Mea-
sured with the OMEGA Laser System.”

R. L. Kremens, K. Kearney, M. A. Russotto, B. Taylor, J. D.
Zuegel, and M. D. Cable, “A Multichannel Neutron
Time-of-Flight Spectrometer for Inertial Confinement
Fusion Applications.”



LLE Review, Volume 69

PUBLICATIONS AND CONFERENCE PRESENTATIONS

F. J. Marshall, D. K. Bradley, M. Cable, J. Delettrez, D.
Harding, J. H. Kelly, J. P. Knauer, R. L. Kremens, S. A.
Letzring, R. L. McCrory, S. F. B. Morse, J. M. Soures, C. P.
Verdon, and B. Yaakobi, “Surrogate Cryogenic Target Implo-
sion Experiments Performed with the OMEGA Laser System.”

P. W. McKenty, P. A. Jaanimagi, R. L. Kremens, K. J. Kearney,
C. P. Verdon, and M. D. Cable, “Convergence Studies of ICF
Implosions Utilizing Doped-CH Ablators to Mitigate Instabil-
ity Growth.”

C. J. McKinstrie, E. J. Turano, and A. V. Kanaev, “Sideward
Stimulated Raman Scattering of a Short Laser Pulse in a
Plasma Channel.”

D. D. Meyerhofer, J. P. Knauer, T. R. Boehly, D. Ofer, C. P.
Verdon, P. W. McKenty, V. A. Smalyuk, O. Willi, and R. G.
Watt, “Performance of Planar Foam-Buffered Targets on the
OMEGA Laser System.”

D. D. Meyerhofer, “Observation of Relativistic Pondero-
motive Effects in Intense Laser-Electron Interactions.”

W. Seka, A. V. Chirokikh, A. Babushkin, R. W. Short, and
A. Simon, “Laser-Plasma Interaction Experiments on the
60-Beam OMEGA Laser System.”

R. W. Short, “Diffractive Calculation of the Intensity Distribu-
tion in a Direct-Drive Laser-Fusion Target Corona.”

A. Simon, “Two Types of Raman Scattering in Hohlraums
and Gasbags.”

V. A. Smalyuk, T. R. Boehly, J. A. Delettrez, L. S. Iwan, T. J.
Kessler, J. P. Knauer, F. J. Marshall, and D. D. Meyerhofer,
“Comparison of Laser and X-Ray Focal Images for a Single
OMEGA Laser Beam.”

J. M. Soures, J. P. Knauer, F. J. Marshall, D. K. Bradley, M. D.
Cable, R. S. Craxton, R. L. Keck, J. H. Kelly, R. L. Kremens,
R. L. McCrory, W. Seka, J. Schnittman, C. P. Verdon, T. J.
Murphy, J. Wallace, J. A. Oertel, C. W. Barnes, N. D.
Delamater, P. Gobby, A. A. Hauer, G. Magelssen, J. B. Moore,
R. Watt, O. L. Landen, R. E. Truner, P. Amendt, C. Decker,
L. J. Suter, B. A. Hammel, and R. J. Wallace, “Indirect-Drive
Target Irradiation Experiments on OMEGA.”

E. A. Startsev and C. J. McKinstrie, “Electron Acceleration by
a Laser Pulse in a Plasma.”

R. P. J. Town, R. W. Short, and C. P. Verdon, “Fokker-Planck
Simulations of Foam-Buffered Targets.”

E. J. Turano and C. J. McKinstrie, “Spatiotemporal Evolution
of Stimulated Raman Scattering.”

B. Yaakobi, F. J. Marshall, and R. Epstein, “High Temperature
of Laser-Compressed Shells Measured with Kr34+ and
Kr35+ X-Ray Lines.”




	LLE Review 69 Cover
	About the Cover
	Table of Contents
	In Brief
	Two-Dimensional SSD on OMEGA
	Areal Density Measurement of Laser Targets Using Absorption Lines
	Modeling the Temporal-Pulse-Shape Dynamics of an Actively Stabilized Regenerative Amplifier for OMEGA Pulse-Shaping Applications
	Multiple Scale Derivation of the Relativistic Ponderomotive Force
	Subpicosecond Imaging System Based on Electro-Optic Effect
	Nuclear Diagnostics for High-Density Implosions
	Publications and Conference Presentations



