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Advances in laser-fusion technology indicate that the temporal
profile of the laser pulse applied to laser-fusion targets is
important for improving the performance of these targets.1 The
OMEGA laser is a 60-beam laser-fusion system capable of
producing a total of 30 kJ of ultraviolet (351-nm) energy on
target, where the temporal profile of the optical pulse applied
to a laser-fusion target can be specified in advance. This is
accomplished by a pulse-shaping system that produces an
optical pulse with a specific temporal pulse shape at the
nanojoule energy level.2 This pulse seeds an actively stabi-
lized Nd:YLF regenerative amplifier3 (regen) followed by and
wavelength matched (1053 nm) to a series of Nd:glass ampli-
fiers. The beams are then frequency tripled to the third harmonic
using KDP nonlinear crystals. To achieve the desired on-target
optical pulse shape, the temporal dynamics of the entire
OMEGA laser system must be accurately modeled to deter-
mine the specific temporal profile of the seed pulse required
from the pulse-shaping system at the beginning of the laser.
The temporal profile of this low-energy seed pulse, when
amplified and frequency tripled by the laser system, will then
compensate for the temporal distortions caused by gain satura-
tion in the regen and amplifiers and by the tripling process, and
will produce the desired pulse shape on target.

To determine the required temporal profile of the optical
pulse at the beginning of the system, all sources of temporal
distortions in the system must be understood and compensated
for. The temporal distortion due to the frequency-tripling
process is modeled with a time-dependent simulation of the
appropriate nonlinear equations for this process.4 The tempo-
ral-pulse distortions in the system’s Nd:glass amplifiers are
easily modeled with our beam code RAINBOW. Modeling the
actively stabilized Nd:YLF regen at the beginning of the
system is the topic of this article. With the regen model
described here, OMEGA’s temporal dynamics can now be
completely modeled. Pulse distortions in the system can be
easily compensated for by proper choice of the seed temporal
profile determined from the overall model.

Modeling the Temporal-Pulse-Shape Dynamics of an
Actively Stabilized Regenerative Amplifier for OMEGA

Pulse-Shaping Applications

The gain of the OMEGA system from the pulse-shaping
modulator to the target is approximately 1014; a gain of 107 in
the actively stabilized regen is included in this overall gain.
Modeling the actively stabilized regen is complicated by many
factors. The regen must be treated as a multipass amplifier, the
last few passes of which experience significant gain saturation
in the Nd:YLF laser rod. The lifetime of the lower-laser-level
manifold in Nd:YLF has been measured to be 21 ns,5 and the
round-trip time in the cavity is 26 ns. A Frantz-Nodvik–type
solution6 for the gain in the Nd:YLF medium cannot account
for this finite lower-laser-level lifetime and, hence, is inappro-
priate; the rate equations must be used to describe the single-
pass gain in the Nd:YLF medium. Finally, the regen incorpo-
rates a feedback mechanism that measures the circulating
pulse energy each round-trip.3 When the circulating pulse
energy exceeds a threshold (~25 µJ), a feedback mechanism is
activated. The feedback mechanism introduces appropriate
losses into the cavity each round-trip in order to stabilize the
circulating pulse energy to a fixed but low-energy level. During
this prelase stabilization phase the regen is operating with a net
gain (round-trip gain/loss) approximately equal to unity and
establishes a constant and stable pulse-energy output from the
regen. After this prelase stabilization is achieved, the laser can
be Q-switched by eliminating the feedback losses from the
cavity. The regen will then emit a Q-switched envelope of
pulses. The pulse at the peak of the Q-switched envelope is
switched out and sent to the OMEGA amplifiers. This stabi-
lized regen produces pulses with a long-term shot-to-shot
energy stability of approximately 0.2%, despite the fluctua-
tions introduced by the flash-lamp pumping, and is insen-
sitive to injected-pulse energy variations of more than two
orders of magnitude.3

The regen is modeled by numerical integration of the rate
equations and careful consideration of the regen dynamics.
The regen model described here includes gain saturation in the
Nd:YLF laser rod, intracavity losses, lower-laser-level life-
times, and the active losses introduced by the stabilizer-feed-
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back circuit. Careful measurements of the input and output
shaped optical pulses from the regen have been made and will
be discussed. The calculations on this regen agree well with
the measured output of the regen and serve as a model for this
important OMEGA component. With this regen model, the
entire temporal-pulse-shaping dynamics of OMEGA can now
be modeled from the pulse-shaping system to the final on-
target pulse shape. This modeling provides us with the capability
to accurately produce any desired temporally shaped optical
pulse on target for laser-fusion experiments.

Rate Equations
OMEGA’s pulse-shaping system produces a shaped optical

pulse that is injected into the actively stabilized regenerative
amplifier. The output-pulse shape of the regen is determined by
gain saturation in the active medium and by the cavity dynam-
ics. The regen model consists of injecting a temporally shaped
pulse into the cavity and calculating the new shape after every
pass through the cavity. The effect on the pulse shape due to
each component is treated separately in the calculation. In this
section we discuss the temporal distortion due to a single pass
through the gain medium and in the next section incorporate
this into the calculation of the overall regen dynamics.

Gain saturation due to a single pass through a gain medium
is calculated by solving the laser rate equations7
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which describe the evolution of the cavity photon flux ϕ, the
atomic population N1 of the lower laser manifold, and the
atomic population N2 of the upper laser manifold. These rate
equations explicitly account for the lifetimes of these upper

and lower laser manifolds. In these equations c is the speed of
light in vacuum; n is the index of refraction of the gain medium;
σ is the stimulated emission cross section (1.2 × 10−19 cm2);
and τi,j is the relaxation time of the transition from manifold i
to manifold j (here, level 0 represents the ground state). The
upper laser manifold N2 consists of two sublevels labeled with
energies E2,n (n = 1,2), and the lower laser manifold N1 con-
sists of six sublevels labeled with energies E1,m (m = 1 to 6),
two of which are degenerate in energy (sublevels 2 and 3) as
shown in Fig. 69.19. The stimulated emission terms in the rate
equations [Eqs. (1)] (first terms on the right side in each
equation) involve transitions between the sublevels E21 and
E12 as shown in Fig. 69.19; hence, the thermal occupation fi Ni
of these laser-active sublevels is used in these terms. The
thermal occupation of these sublevels is calculated by
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where Ei,j is the energy of level i sublevel j relative to the lowest
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Figure 69.19
The energy levels involved in the 1.053-µm-Nd:YLF laser transition. The
arrow shows the laser transition between sublevels within the manifolds
shown.
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energy level in the manifold, k is the Boltzman constant, and T
is the temperature (assumed to be room temperature).

The rate equations [Eqs. (1)] can be solved numerically. We
transform these equations along their characteristics in the
time-distance plane with the transformation equations
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for the transformed rate equations. Here we have transformed
Eq. (1a) using the transformation equations [Eqs. (3)], and we
have left Eqs. (1b) and (1c) untransformed since the photon
flux evolves in both space and time, whereas the populations
evolve in time only. These equations can be solved numerically
given appropriate boundary conditions.

In the model, the photon flux is specified at the entrance
face of the laser rod and is given by the temporal profile of the
pulse entering the rod. The initial upper-laser-level population
is determined from measurements of the laser rod small-signal
gain, and for simplicity the initial lower-laser-level population
is assumed to be zero. With these boundary conditions,
Eqs. (5) can be numerically integrated to yield the photon flux
at any time and for any position in the laser rod. Of interest for
our calculations is the output-pulse shape specified at the

output face of the laser rod. These equations with these
boundary conditions, along with the regen dynamics discussed
below, have been solved numerically, and the results are
presented below.

Regenerative Amplifier Model
Modeling the regen consists of injecting a pulse with a given

pulse shape and energy into the regen and calculating the new
pulse shape and energy after each round-trip through the
cavity. A single round-trip through the regenerative amplifier
is depicted in Fig. 69.20. The pulse first experiences gain
through the laser rod followed by propagation to the output-
coupling mirror and back. The pulse then experiences gain
again followed by propagation to the end mirror and back.
Losses due to the output-coupling mirror and the feedback
stabilizer (discussed below) are included in the calculation.
During propagation of the pulse in the cavity, the upper- and
lower-laser-level manifolds are allowed to decay with their
respective lifetimes. This calculation for a single pass through
the cavity gives the output-pulse shape and energy, given the
input-pulse shape and energy for the pass. The output pulse for
each pass is used as the input pulse for the next pass through the
cavity, and the procedure is repeated for a given number of
round-trips through the cavity.

The loss due to the feedback stabilizer depends on several
factors. The cavity incorporates two Pockels cells, one of
which is feedback controlled. Specific voltages are applied to
all four electrodes of the two Pockels cells at specific times.3

During the beginning of the flash-lamp cycle, high losses are
introduced into the cavity to allow the gain to build up in the
rod. At the peak of the gain, a pulse is injected into the cavity
at time t1, and all losses are removed from the cavity (with the
exception of the static losses here assumed to be 55% in our
laser, which includes the 50% output coupler loss) allowing the
circulating-pulse energy to increase. The applied voltages after
time t1 are shown schematically in Fig. 69.21(a) (however, not
to scale). When the circulating-pulse energy reaches a thresh-
old value (adjusted to ~25 µJ), the feedback stabilizer is
activated. At this time (t2) a dc voltage Vdc is applied to one
electrode of the first Pockels cell, which introduces a dc loss
into the cavity. Simultaneously, a modulated feedback-con-
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Figure 69.20
The regen model calculates the pulse shape and
energy after a round-trip in the cavity, then
iterates for many round-trips. The calculation
includes the effects of gain saturation, propa-
gation, and static and feedback losses.
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trolled voltage V(t) is applied to an electrode of the feedback-
controlled Pockels cell, which introduces a feedback-controlled
modulated loss in the cavity. The function of the feedback-
controlled modulated loss is to stabilize the circulating pulse
energy to a specified constant low value. If the pulse energy
falls below (above) this energy, loss is removed (added) to
maintain the specified output-pulse energy. Specially designed
circuitry for this modulated feedback-controlled voltage3 elimi-
nates pulse-shape distortions caused by fast feedback-voltage
changes during pulse propagation through the Pockels cell, as
in the previous design.8 This ensures that pulse-shape distor-
tions in the regen are due mainly to gain saturation. Finally,
after the output-pulse energy is stabilized by the feedback
mechanism during this prelase phase, the laser is Q-switched,
at which time (t3) all feedback loss is removed and a Q-
switched pulse envelope is allowed to build up. (During this
time an adjustable low-level dc loss is left in the cavity to
control the final output-pulse energy; however, this loss is not
included in the model.) The measured output-pulse train enve-
lope from the regen is shown in Fig. 69.21(b).

The voltage applied to the feedback-controlled Pockels cell
during the prelase stabilization is modulated every round-trip
so that the Pockels cell transmission is given by
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where V(t) is the instantaneous value of the modulated voltage
difference between the electrodes and Vπ is the quarter-wave
voltage of the Pockels cell. The modulated voltage for a
particular pass when the feedback circuitry is active is modeled
by

V V V ei i i+
−= +[ ]1 ∆ τ τr t f b , (7)

where Vi is the value of the modulated voltage at the beginning
of the pass, ∆Vi is the increase in voltage due to the feedback
circuitry, and Vi+1 is the value of the modulated voltage after
the pass. The change in voltage ∆Vi is given by

∆Vi = ( ) × ( )pulse energy J feedback gain V J , (8)

where the feedback gain is determined by the feedback cir-
cuitry. In Eq. (7), the final voltage is allowed to decay every
round-trip (round-trip time τrt = 26 ns) with the exponentially
decreasing feedback decay time τfb = 35 ns. When the laser is
Q-switched at time t3, all feedback loss is removed from the
cavity allowing the free buildup of the Q-switched pulse train.

The above model describes how to calculate the output-
pulse shape from the regen given the input-pulse shape. Often
it is necessary to calculate the inverse, that is, calculate the
required input-pulse shape to the regen that will produce a
desired output-pulse shape. A good approximation for this
input-pulse shape can be gotten from the output-pulse shape
with a simple procedure. A transfer function for the regen can
be calculated by using the desired regen-output-pulse shape

I tout ( )[ ] as input to the calculation to obtain a new output-
pulse shapee.g., newI t( )[ ]. The transfer function T(t) for the
regen is obtained by dividing these two functions to get

T t
I t

I t
( ) = ( )

( )
new

out . (9)

The required input-pulse shape I tin ( )[ ] can now be calculated
with this transfer function and is given by

I t
I t

T t
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. (10)
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Figure 69.21
Regen temporal dynamics showing (a) feedback-controlled Pockels cell
voltages (not to scale), and (b) measured regen-output envelope filtered to
remove individual pulses in the train.
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This simple procedure is used to obtain the required regen-
input-pulse shape that will produce the desired regen-output-
pulse shape. More importantly, this procedure is useful in
producing the desired OMEGA on-target pulse shape.

Experiments
The regen in OMEGA uses a Nd:YLF laser rod pumped to

a single-pass, small-signal gain of approximately 2.9. The laser
uses a 50% reflecting output coupler, the cavity-round-trip
time is 26 ns, and the laser operates at 5 Hz. Typical output
energies of the pulse switched out at the peak of the Q-
switched envelope are approximately 1.0 mJ.

The measured output-pulse train from the regen is shown in
Fig. 69.21(b). The output has been filtered to show only the
envelope of the pulse-train output from the regen. It can be
seen that the feedback is activated at time t2 approximately
600 ns after the pulse is injected into the cavity at time t1 = 0.
At t3 = 2.9 µs, the laser is Q-switched and a pulse train builds
up and decays as the gain is depleted.

Figure 69.22 shows the calculated-output-pulse train from
the regen for the above case. Individual pulses within the train
are shown. The calculation is based on the model described
above with typical values for the regen parameters. Note the
good agreement between the measured-output-pulse train in
Fig. 69.21(b) and the predictions shown in Fig. 69.22.

Figure 69.22
Calculated regen-output envelope corresponding to the case measured in
Fig. 69.21(b). Individual pulses are shown.

Figure 69.23 shows regen input/output-pulse shapes for a
square pulse injected into the regen. The output-pulse shape is
the pulse that is switched out at the peak of the Q-switched
envelope. The input square pulse (curve plotted with long
dashed lines) and measured-regen-output pulse (curve plotted
with short dashed lines) are shown in Fig. 69.23, along with the
calculated-output-pulse shape (curve plotted with solid line)
obtained with the above numerical method using the mea-
sured-square-pulse shape as input to the calculation. The regen
parameters used in the calculation correspond to the measured
regen parameters with slight adjustments to obtain good agree-
ment with the data. By adjusting the regen parameters in this
way, the model is calibrated to the data. Once this calibration
procedure is performed, the parameters in the model are left
unchanged and other shaped pulses can be calculated and
compared to measurements.

Figure 69.24 shows the same information as Fig. 69.23, but
for a shaped optical pulse injected into the regen. The regen
parameters were identical to those used for the calculation in
Fig. 69.23. This pulse shape, when injected into OMEGA, will
produce a square pulse shape at 351-nm wavelength at the
output of OMEGA.

In summary, we have modeled the temporal evolution of a
shaped optical pulse injected into our feedback-stabilized
regen to a high degree of accuracy. We have solved the rate
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Figure 69.23
Square-pulse distortion from the regen showing the input-pulse shape (long
dashed lines), the measured-output-pulse shape (short dashed lines), and the
calculated-output-pulse shape (solid line).
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equations including upper- and lower-laser-level lifetimes ex-
plicitly. We provide a prescription for determining the
injection-pulse shape required to produce a given output-pulse
shape from this regen. Finally, with this model of the regen, the
entire OMEGA laser system can be modeled, and on-target
pulse shapes can be specified in advance by OMEGA users.
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Figure 69.24
Shaped pulse from the regen showing the input-pulse shape (long dashed
lines), the measured-output-pulse shape (short dashed lines), and the calcu-
lated-output-pulse shape (solid line).
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