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The preceding article reported on the first indirect-drive exper-
iments carried out on OMEGA, using cylindrical hohlraums.
This article advocates the use of tetrahedral hohlraums, by
which are understood spherical hohlraums with four laser en-
trance holes (LEH’s) placed at or near the vertices of a tetra-
hedron. This alternative approach appears to be well suited to
the OMEGA geometry and could offer an alternate route to
ignition on the National Ignition Facility (NIF).

The primary advantage provided by the tetrahedral hohl-
raum is better radiation uniformity on the capsule. Historically,
the cylindrical hohlraum1 has been the preferred approach.
Among the reasons for this may be that the cylindrical geom-
etry is two-dimensional (2-D) and therefore permits detailed
hydrodynamic modeling and optimization, while the tetrahe-
dral hohlraum is intrinsically 3-D and thus not amenable to
modeling with currently available hydrodynamic codes. How-
ever, a comparison between the two approaches is now pos-
sible using a new, 3-D view-factor code named BUTTERCUP.
While this code does not include any hydrodynamics, it does
enable reasonable predictions to be made for cylindrical and
tetrahedral hohlraums on both OMEGA and the NIF.

On OMEGA, the target chamber geometry provides an ex-
act tetrahedral symmetry, permitting the irradiation of tetra-
hedral hohlraums with all 60 beams. In comparison, only 40
beams can be used for cylindrical hohlraums. For the NIF,
assuming that 72 ports are provided to accommodate direct
drive (as is the current baseline), it will be possible to irradiate
a tetrahedral hohlraum with 44 out of the 48 beams without in
any way compromising the geometrical arrangement of beams
required for cylindrical hohlraums or direct drive. On both
laser systems, BUTTERCUP predicts that good irradiation uni-
formity (∼2% rms) will be obtained on the capsule at all times
during the implosion. This uniformity is relatively insensitive
to albedo and other changing conditions inside the hohlraum.
“Beam phasing” (the use of different temporal pulse shapes in
different beams), which is required for cylindrical hohlraums,
may not be necessary for tetrahedral hohlraums.

Tetrahedral Hohlraums—An Alternative Approach
to Indirect Drive on OMEGA and the NIF

The cylindrical and tetrahedral geometries considered in
this article are shown in Fig. 68.9. Each type of hohlraum can be
irradiated on each laser system. The z axis is taken to lie along
the hohlraum axis for conventional cylindrical hohlraums.
This corresponds to the true vertical direction for the NIF, and
to a pent-pent axis for the experiments on OMEGA described
in the preceding article. The cylindrical hohlraum for OMEGA
is a scale-1 Nova hohlraum. The tetrahedral hohlraums are
viewed from different angles—from the vertical for the NIF
and along a hex-hex axis for OMEGA. For tetrahedral hohlraums
on OMEGA, each LEH faces a hexagon on the target chamber
located at a vertex of a regular tetrahedron. The target chamber
geometry permits ten distinct orientations of the hohlraum.
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Figure 68.9
Tetrahedral and cylindrical hohlraums for (a) the NIF and (b) OMEGA with
the capsule shown shaded. For each laser system the two hohlraums are drawn
to the same scale. Tetrahedral hohlraums for the NIF are viewed from the
vertical (z) direction and have laser entrance holes (LEH’s) at θ = 55° and
125°. Those for OMEGA are viewed from one LEH, taken to define the z axis,
and the other LEH’s are arranged in tetrahedral symmetry with θ = 109.5°;
each LEH is aligned with a hexagonal face of the target chamber.
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This article will review the issue of indirect-drive unifor-
mity, describe the code BUTTERCUP, and present results for
OMEGA and the NIF. Given the demonstrated ability of the
OMEGA laser to perform precision indirect-drive experi-
ments, as described in the preceding article, it is clear that
OMEGA is uniquely capable of investigating the feasibility of
tetrahedral hohlraums.

Indirect-Drive Uniformity
Many issues are crucial for the success of indirect-drive

ICF. These include ensuring a high conversion efficiency of
laser energy to x rays, ensuring that the laser energy can enter
the hohlraum unimpeded by plasma ablating from around the
laser entrance holes (LEH’s), avoiding absorption of the laser
energy into low-density plasma whether from the capsule or
the wall, avoiding laser-plasma instabilities, tailoring the radia-
tion drive on the capsule by designing a suitably shaped laser
pulse, and maximizing the energy coupling into the capsule by
making the capsule as large as possible and the LEH’s as small
as possible relative to the dimensions of the case. However, the
most critical issue may be that of ensuring an acceptable level
of radiation drive uniformity on the capsule.

In the standard cylindrical hohlraum, the uniformity issue is
indeed critical. On the Nova laser at the Lawrence Livermore
National Laboratory, for example, there are ten laser beams,
five through each LEH, whose irradiation pattern on the inside
of the case may be represented as two rings in a cylindrically
symmetric geometry. In reality, of course, there are ten more or
less distinct laser spots with some azimuthal asymmetry. The
uniformity experienced by the capsule varies in three stages:
(a) initially, the x-ray flux arises predominantly from the laser-
irradiated spots; (b) later, the hohlraum wall “warms up,” con-
tributing a component with deficits at the poles of the capsule
(the points that face the LEH’s); and (c) still later, as plasma
expands from the curved portion of the case, the laser energy
is absorbed closer to the LEH’s, an effect known as spot mo-
tion, and the component due to the laser-heated spots develops
a surplus at the poles. These three stages of time-dependent
uniformity have been well documented.1–3 While these time-
dependent nonuniformities may average out to a certain ex-
tent,1 it is desirable to maintain good uniformity throughout the
implosion. According to Refs. 1 and 4, the tolerable level of
time-dependent nonuniformity may be of the order of 4%–
10%, depending on the details of the target design, as long as
the time-averaged uniformity is &1%. (In Ref. 5, however, it is
asserted, based on a simplified, thin-shell hydrodynamic model,
that time-dependent asymmetries should not exceed ±2%.)
Another effect—laser-beam steering in gas-filled hohlraums

(hohlraums filled with low-density, low-Z gas intended to
prevent high-Z plasma from the walls from filling
the hohlraum1,4)—has also been identified as significant.6

In the base-line design4 for a cylindrical hohlraum on the
NIF, the 48 beams (each a two-by-two array of sub-beams) are
arranged on the target chamber in eight rings, each correspond-
ing to a different angle θ with respect to the vertical (z) direc-
tion in the target area. When focused onto the hohlraum wall,
the rings overlap in pairs, so that the inner surface of the hohl-
raum is effectively irradiated with two rings in each of the north
and south hemispheres. By varying the relative powers of the
different rings (“beam phasing”),1 it is possible to eliminate
the P2 spherical-harmonic component of irradiation nonuni-
formity on the capsule at all times and the P4 component in
the time-averaged sense. The desired beam power histories
may be obtained through “integrated calculations,” which in-
clude the two-dimensional hydrodynamic evolution of the
hohlraum (assumed azimuthally symmetric) and detailed radi-
ation transport.

The P2 component of nonuniformity is avoided entirely in
tetrahedral hohlraums. Using a geometric treatment, Phillion
and Pollaine7 found that with strict tetrahedral symmetry, all
l = 1, 2, and 5 spherical-harmonic components are identically
zero, regardless of spot motion, beam steering, or other real
physical effects; in addition, with a combination of judiciously
selected beam locations and beam phasing, the l = 3 and 4
components can be made to vanish at all times. Tetrahedral
hohlraums thus offer improved uniformity compared with cy-
lindrical hohlraums. Possible drawbacks include the following:
(a) beam placements designed with true tetrahedral sym-
metry as in Ref. 7 would be incompatible with cylindrical hohl-
raums and thus with the NIF; (b) the hydrodynamics are harder
to model as the configuration is 3-D rather than 2-D; (c) with
four holes rather than two, there may be more radiation losses;
and (d) there may be more LEH clearance problems. The trade-
off between these issues remains to be resolved. However, on
the basis of uniformity considerations, this article suggests that
the tetrahedral hohlraum may be a viable approach worth pur-
suing on the NIF, complementary to the cylindrical hohlraum.

Aside from Ref. 7, the tetrahedral geometry has been
studied previously only to a limited extent. To the best of our
knowledge, Azechi8 was the first to describe it in the ICF liter-
ature. In this reference, the target was conceived as a “cannon-
ball” target, in which the capsule would be imploded not by
x rays but by the plasma ablated off the inside of the hohlraum
wall. Spherical cannonball targets with 2, 4, and 12 holes are
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described in Ref. 9, which also presents some tomographic
x-ray images of the compressed core.

The cannonball approach was dropped in favor of the
radiation-drive approach, where, for reasons of uniform cap-
sule drive, it is necessary to avoid the wall plasma contributing
to the drive on the capsule. For many years radiation drive was
conceived in the literature as occurring with a spherical radia-
tion case. (In 1990, though, Kato10 published experimental
work on cylindrical hohlraums that clearly demonstrated the
importance of the l = 2 nonuniformity.) Mochizuki11 consid-
ered two concentric spherical surfaces and calculated the geo-
metrical smoothing associated with radiation emission from
the outer to the inner surface. Murakami12 extended this ap-
proach to use a spherical-harmonic decomposition of the radi-
ation source on the case—each spherical-harmonic mode is
damped by some appropriate factor to give the smoothed
radiation drive on the capsule. Murakami gave examples for
two-hole spherical hohlraums but did not include the contri-
butions from portions of the case not irradiated directly by the
laser beams; thus he did not consider nonuniformities on the
capsule resulting from the finite size of the LEH’s. The spher-
ical-harmonic approach was also used in Ref. 7. Wilson13

considered three- and four-hole spherical hohlraums from the
point of view of distributing the laser-irradiated spots as uni-
formly as possible on the interior of the hohlraum wall.
Murakami14 used a view-factor code, close in spirit to the pres-
ent work, to calculate the on-capsule uniformity in ellipsoidal
and spherical cavities for ion-beam and laser drivers, respec-
tively. Other work on radiation symmetrization is found in
Ref. 15, which includes a model of the radiative heat wave
moving into the wall; Ref. 16, which also considers a cylin-
drical hohlraum; and Ref. 17, which includes a treatment of
the unirradiated hohlraum wall using a multiple-reemission
smoothing factor.

The Code BUTTERCUP
The primary tool used in this article is the 3-D view-factor

code BUTTERCUP. This code has been used to generate
designs for cylindrical and tetrahedral hohlraums on both the
NIF and the OMEGA laser systems. It considers the geom-
etries shown in Fig. 68.9, which also serves to define some
notation (the case radius Rc, the hole radius Rh, the capsule
radius Rcap, and the conventional spherical angles θ and φ).

The code starts by tracing rays in 3-D from each laser beam,
through the LEH’s, and into the hohlraum. The rays are repre-
sented using a 2-D grid that covers the beam cross section.
Typical beam paths into tetrahedral and cylindrical hohlraums

are shown in Fig. 68.10. Each beam is calculated indepen-
dently, allowing for independent energies, pointings, etc. No
symmetries are assumed. The NIF beams are assumed to de-
rive from phase plates and to comprise parallel rays in the far
field with a 500 × 1000-µm elliptical cross section,4 oriented
so that their intersections with the planes of the LEH’s are
approximately circular. The size of the cross section is deter-
mined from plasma physics considerations: i.e., smaller spots,
while preferable for fitting through the LEH’s, result in laser
intensities (especially near the LEH’s) that may be too high
from the point of view of plasma instabilities. For OMEGA,
phase plates are not assumed, but the beams are assumed to be
focused through vacuum just outside the hohlraums, as is cur-
rently done on Nova. (The standard direct-drive phase plates
on OMEGA have best-focus spot sizes of ∼0.8 mm— too large
for indirect drive.)

The code is written to follow each ray through multiple re-
flections within the hohlraum, depositing some fraction A iθ( )
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Figure 68.10
Representative beam paths into (a) tetrahedral and (b) cylindrical hohlraums,
with dimensions appropriate to the NIF. In tetrahedral hohlraums the laser
spots are spread fairly uniformly on the hohlraum wall, while in cylindrical
hohlraums they lie on a small number of discrete rings. To account in a simple
way for wall motion, the solid and dashed lines indicate the initial and final
wall locations. For the tetrahedral hohlraums, the beams incident with θmin

and θmax are drawn to illustrate clearance issues. One of these beams is drawn
with a clearance angle θc from an opposing LEH. For an LEH angle θLEH =
55°, θmin = 23.0°, θmax = 54.8°, and the smallest θc = 23.7°.
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each time where θi is the angle of incidence. The code can also
impose a random scattering on the reflected rays, e.g., with a
deflection cone having a specified shape and angular width.
The code can be used to investigate glint—the early-time
reflection of laser light from the hohlraum wall to the capsule.
However, for the work presented here, the simple assumption
is made that A(θ) = 1. This should be a very good approxima-
tion for the large hohlraums of current interest, and especially
for NIF hohlraums. For hohlraums on Nova, the absorption
has been measured to be in excess of 90%.18 The main physi-
cal process not modeled here is distributed absorption along
the ray path. This is especially important for hohlraums that are
initially empty (i.e., not gas filled), in which the light can be
absorbed at low densities in the ablating gold plasma whose
expansion is unimpeded.

After all of the rays have been traced, BUTTERCUP calcu-
lates a background radiation temperature Tr that is spatially
independent. The radiation field within the hohlraum is then
treated as a Planckian distribution at this temperature. Experi-
mentally, this is a rather good approximation.19 The temperature
Tr at a given time is calculated using a simple, global energy
balance between the power entering the radiation field from the
laser source and the power lost from the radiation field, there
being insignificant energy stored in the radiation field:

P T A NA Al r c c h w wlas 1 4−( ) = + +( )β σ β β , (1)

where Plas is the total laser power absorbed by the case, βl is
the fraction of this power that is not converted to x rays, σ is
Planck’s constant, and the term (βcAc + NAh + βwAw) may be
thought of as the effective area of the hohlraum. The quantities
Ac, Ah, and Aw are the areas of the capsule, an LEH, and the
wall, respectively, in a hohlraum with N holes. The quantity
βw is defined as 1−αw, where αw is the wall albedo defined as
the fraction of the x-ray energy incident on the hohlraum wall
that is reradiated into the hohlraum; βc (= 1−αc, where αc is the
capsule albedo) is similarly defined. The wall albedo αw in-
creases with time and, at the peak of the laser pulse, is typically
0.8 for Nova or OMEGA and 0.9 for the NIF. The capsule
albedo αc is taken here to be small (0.1); reemission from the
capsule is in any case a minor factor in Eq. (1). The x-ray con-
version efficiency, 1−βl, depends on the irradiation condi-
tions1 and is taken to be 0.7 here.

Given the background temperature Tr, the emission inten-
sity Ie (power per unit area) at any point on the interior of the
case can be calculated from local energy balance. Incoming

fluxes comprise radiation from the cavity (σ Tr
4) and the

absorbed laser energy Il. Subtracting the respective fractions
βw and βl that are not re-radiated, one finds Ie:

I T Ie w r l l= −( ) + −( )1 14β σ β . (2)

One can then define an effective radiation temperature Te by
equating Ie to σ Te

4, and, more important from the point of
view of the code, the brightness (power per unit area per unit
solid angle) B Ie= π  at all points on the hohlraum wall.

At present, the code assumes that the albedos are spatially
independent. This is not an intrinsic limitation since BUTTER-
CUP could easily be linked to some model giving the spatially
dependent albedos through Eqs. (1) and (2). Another assump-
tion implicit in the code is that the x-ray conversion efficiency
is independent of the angle of incidence of the laser beams.
Greater accuracy here would require a self-consistent hydro-
dynamic calculation.

Given the brightness distribution B on the wall, BUTTER-
CUP then scans over a number of points on the capsule and,
for each point (θ, φ), determines the incoming irradiation in-
tensity I(θ, φ) by integrating the brightness over all angles
(see Fig. 68.11). BUTTERCUP makes use of the fundamental
result that, for radiation transport in vacuum, the spectral
brightness is constant along a ray;20 it thus suffices to follow
each ray from the capsule, with spherical coordinates (θ9, φ9)
relative to the capsule normal, to its intersection point on the
wall and look up the brightness there. The incoming intensity
is then given by

I B d dθ φ θ φ θ θ θ φ, , cos sin .( ) = ′ ′( ) ′ ′ ′ ′∫∫ (3)

The cosθ9 factor accounts for the angle between a surface
element of the capsule and the incoming ray, and the sinθ9

factor for the solid angle. The code does not split each of
the outer and inner surfaces into segments for which cross-
coupling coefficients are calculated, as is generally done in
view-factor codes.14 Thus, while BUTTERCUP is known
loosely as a view-factor code, “direct integration” would be a
better description of its algorithm. The difference between the
two approaches is minor; both approaches should give the
same answers within the limits of numerical resolution.

Examples of BUTTERCUP predictions are given in
Fig. 68.12 for tetrahedral hohlraums on OMEGA and the NIF.
One-dimensional lineouts of the intensity on the capsule are
shown as functions of azimuthal angle φ for various values of
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θ, as are lineouts along θ for various values of φ. The symme-
tries shown in Fig. 68.9 are easily seen in the azimuthal scans.
In Fig. 68.12(a) the scans at θ = 45° and 135° reflect the two-
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Figure 68.11
Schematic of the algorithm used by the view-factor code BUTTERCUP. The
radiation flux incident at each point on the capsule is determined by integra-
ting the brightness B Te= σ π4  of the wall over a hemispherical solid angle.
The algorithm is essentially independent of whether the hohlraum is
(a) cylindrical or (b) tetrahedral.
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Figure 68.12
Representative results from BUTTERCUP calculations. The radiation intensity on the capsule is plotted against φ and cosθ for NIF and OMEGA tetrahedral
hohlraums. The different patterns correspond to the different orientations shown in Fig. 68.9. In all cases the minima occur at points facing the LEH’s.

fold symmetry of the NIF, while the scan around the equator
(θ = 90°) shows a four-fold symmetry. For the OMEGA geom-
etry, the expected three-fold symmetry is seen. In all cases the
intensity minima correspond to points on the capsule facing
an LEH.

Tetrahedral Hohlraums on OMEGA
A comparison has been made between cylindrical and tetra-

hedral hohlraums on OMEGA, using the parameters listed in
Table 68.II. The cylindrical hohlraums are standard Nova
hohlraums, except that slightly smaller LEH’s are used.

As in the preceding article, the cylindrical hohlraums are
conveniently irradiated with the axis of the cylinder oriented to
pass through the centers of opposing pentagons on the target
chamber. This provides, for each LEH, two rings of five beams
with angles of incidence 21.4° and 42.0°, and a ring of ten
beams at 58.9°. Figure 68.13 shows a possible design with
beams pointed onto three rings on the cylinder wall. This com-
bination of beams can deliver 20 kJ of energy in a 1.0-ns pulse.
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With a tetrahedral hohlraum, however, all 60 beams can be
used for a total of 30 kJ of laser energy. The four groups of 15
beams entering the four LEH’s are equivalent to each other
with respect to rotations within the tetrahedral group. Through
each LEH there are two sets of six beams, with θ = 23.2° and
47.8°, respectively, and one set of three beams with θ = 58.8°.

A sinusoidal map (Fig. 68.14) of the locations of all 60
OMEGA beams on the wall of a tetrahedral hohlraum shows
generally uniform coverage of the wall. The beams clear the
LEH’s with minimum clearances of 50 µm upon entering the
case and 150 µm on the inside of the case.

The dependence of the rms nonuniformity σrms on albedo
is shown in Fig. 68.15 for both cylindrical and tetrahedral
hohlraums on OMEGA. Low albedo corresponds to early
times, while the maximum albedo corresponds to the peak of
the pulse or later times. For each type of hohlraum, one curve
applies to “full power,” i.e., equal beam energies, and the other
to a “tuned” case, i.e., with the energy in some beams being
reduced. The tuning carried out here is time independent; thus,
the beams have different energies but the same pulse shape.
(By appropriate detuning of the frequency-conversion crys-
tals, this can probably be accomplished quite accurately on
OMEGA.) For both cylindrical and tetrahedral hohlraums the
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Figure 68.13
A possible irradiation geometry for cylin-
drical hohlraums on OMEGA (right) and
corresponding contours of brightness B
(left). A 40-beam subset of the 60 beams is
used, comprising three different rings from
each hemisphere of the target chamber. The
inner and middle rings (1 and 2) possess
five beams each, while the outer rings (3)
have ten beams spaced in five pairs around
the azimuth. The resulting pattern on the
hohlraum wall comprises three bands, two
with 15 beams each (as used in most of the
experiments described in the preceding
article) and one with ten beams.

Table 68.II: Dimensions of cylindrical and tetrahedral hohlraums for the NIF and for OMEGA as used in
this article. (In calculations where wall motion is included, these are the initial dimensions.)

NIF OMEGA

Cylindrical Tetrahedral Cylindrical Tetrahedral

Case radius Rc (mm) 2.76 4.55 0.8 1.4

Hole radius Rh (mm) 1.38 1.14 0.5 0.4

Length L (mm) 10.4 — 3.0 —

Capsule radius Rcap (mm) 1.13 1.13 0.2 0.2

Rcap/Rc 0.41 0.25 0.25 0.14

Case area Ac (mm2) 216.2 243.8 17.53 22.62

Total hole area Ah (mm2) 11.96 16.33 1.57 2.01

Ah/Ac 0.055 0.067 0.09 0.09

Energy (kJ) 1800 1650 20 30
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tuning was carried out to optimize the uniformity at or near the
end of the laser pulse, where the albedo is approximately 0.8.
Tuning the tetrahedral hohlraum was accomplished by noting
that the symmetry of the system results in five groups of beams
and adjusting the five available independent parameters.

Figure 68.15 shows a strong dependence of σrms on albedo
(and thus time) in the case of the cylindrical hohlraum. While
the tuned case performs significantly better, the time-depen-
dent nonuniformity (dominated by the P2 mode) is still evident.
In contrast, the insensitivity to albedo for the tetrahedral
hohlraum is striking. The reason is clear from Fig. 68.14—the
laser spots are distributed so uniformly around the case that the
contribution to the capsule uniformity due to the direct laser
source shares the same intrinsic spatial distribution as the
background radiation source. Thus, as the increasing albedo
changes the proportions of these two sources, the net effect
seen by the capsule is essentially zero. Using the same argu-
ment, it is probable that this picture will be unaffected by other
effects such as wall motion, beam steering, and laser-beam
refraction. It is hard to conceive of any processes that can sys-
tematically upset the uniform distribution of laser spots on the
hohlraum wall.

The tuned tetrahedral curve exhibits some further improve-
ment. This is achieved by increasing the relative weighting of
beams near the LEH’s, which results in a greater effect at early
times. The tuned tetrahedral hohlraum achieves a total rms
nonuniformity of 1.5% or less throughout the whole range of
albedos. The slightly better performance of the OMEGA
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Figure 68.14
Sinusoidal map of the locations of all 60 OMEGA beam spots on the interior
wall of a tetrahedral hohlraum. One LEH is centered on the z axis [as in
Fig. 68.9(b)] and the others are shown as dashed circles. The exact tetrahedral
symmetry of the OMEGA beam locations and the even distribution of beam
spots on the hohlraum wall effectively eliminate all spherical harmonic
modes other than those present in true tetrahedral geometry.

Figure 68.15
Nonuniformity σrms as a function of albedo for cylindrical and tetrahedral
hohlraums on OMEGA, for equal beam energies (“full power”) and for
optimized relative beam energies (“tuned”). Each hohlraum is designed for
optimum symmetry (at full power) at an albedo of 0.8. The cylindrical
hohlraum is sensitive to large swings in the P2 and P4 Legendre modes and
thus requires tuning, while the tetrahedral hohlraum is dramatically less
sensitive to albedo. This is due to the uniform coverage of the hohlraum wall
seen in Fig. 68.14 (Note that time-dependent tuning, not considered here, is
needed for cylindrical hohlraums for optimum performance.)

tetrahedral hohlraum in comparison with that of the NIF (see
below) is due in part to the absence on OMEGA of the Y20
spherical-harmonic component.

Tetrahedral Hohlraums on the NIF
Similar calculations have been performed for tetrahedral

hohlraums on the NIF. The hohlraum dimensions are listed in
Table 68.II. (The dimensions for cylindrical hohlraums are
given for comparison, although results for cylindrical hohlraums
are not given in this article.)

Figure 68.16(a) shows a sinusoidal plot of the NIF port
locations for the most recent design. The ring of 12 beams at
θ5 = 77.45° is provided to accommodate direct drive. The
azimuthal angles between each of rings 1 through 4 and their
reflections in the lower hemisphere are chosen so that beam
dumps are located a quarter of a port spacing from the ports in
the opposing rings. The relative azimuthal angle between rings
1 and 3 is chosen over other possibilities to give the configu-
ration best suited to tetrahedral hohlraums. Specifically, the φ’s
of the first beam port in each of the ten rings, from top to
bottom, are 78.75°, 33.75°, 16.875°, 39.375°, 24.375°, 5.625°,
5.625°, 28.125°, 56.25°, and 11.25°.
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Figure 68.16(b) illustrates the surface of the sphere divided
into the four sectors corresponding to tetrahedral symmetry.
The LEH’s are placed at the vertices of a true tetrahedron (i.e.,
θLEH = 55°). It is possible to use 11 out of the 12 available
beams. It may be noted that one beam from the lower hemi-
sphere is pointed into the LEH shown in the upper hemisphere.
Each beam is directed into the closest LEH.

BUTTERCUP calculations for a representative design were
carried out for three separate hohlraum radii: 4.55 to 4.15 mm,
allowing for 0.4 mm of wall motion during the laser pulse (see
Fig. 68.17). This is consistent with a 1-D LASNEX calcula-
tion.21 From the LASNEX calculation it was also possible to
estimate the time and incident laser power corresponding to
each value of albedo. These are indicated in Fig. 68.17, where
the appropriate portions of the three curves are shown solid.

The rms nonuniformity σrms is close to 2% for all values of
albedo. In this calculation time-independent tuning was used

(as in Fig. 68.15 for OMEGA). This resulted in an energy into
the hohlraum of 1.3 MJ [out of the available untuned energy of
1.65 MJ (11/12 × 1.8 MJ)]. However, with time-dependent
tuning, significantly more than 1.3 MJ can be used because the
tuning is only needed at early time (low albedo). Thus, if the
hohlraum were tuned in a time-dependent way, i.e., during the
rising part of the laser pulse but not during the final, maximum-
power portion, close to 1.65 MJ would be delivered to the
hohlraum and σrms would stay within 2% throughout the pulse.

The incidence angles of the 11 beams through the LEH are
23.0°, 23.7°, 31.5°, 32.2°, 39.2°, 43.6°, 47.2°, 47.8°, 53.8°,
53.9°, and 54.9°. Beam paths with the minimum and maximum
angles are shown in Fig. 68.10. Some design flexibility is
available by making minor adjustments to the (θ,φ) coordi-
nates of the LEH and by not pointing some beams through the
center of the LEH. However, experiments aimed at exploring
clearance and symmetry issues in tetrahedral hohlraums are
needed before such detailed design issues are addressed.

Run JRP68T3
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Figure 68.16
(a) Sinusoidal map of the proposed port loca-
tions on the NIF target chamber. Cylindrical
hohlraums are irradiated with rings 1 through 4,
and direct-drive targets with rings 1, 3, and 5.
The small solid circles indicate LEH placements
with θLEH = 55°. The subset used for tetrahedral
hohlraums is shown in (b), which also divides
the surface of the sphere into the four regions
closest to each LEH.
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Summary
A view-factor code has been developed to carry out a com-

parative study of indirect-drive uniformity in cylindrical and
tetrahedral hohlraums. This code does not include hydrody-
namics and radiation physics, but it has the merit of being fully
3-D. It has been used to model both types of hohlraum, for
both the NIF and OMEGA laser systems.

The results for cylindrical hohlraums are in accord with
what has been well established, namely that the P2 nonuni-
formity is the dominant nonuniformity and must be compen-
sated through varying the relative powers of the different laser
beams as a function of time, a process known as beam phasing.
Tetrahedral hohlraums, on the other hand, display a signifi-
cantly reduced sensitivity to the changing wall albedo and may
not require beam phasing at all if an rms nonuniformity around
the capsule of 2% or less at all times is acceptable.

Examination of the NIF geometry has shown that, by appro-
priately using the extra beam ports proposed for direct drive,
it is also possible to irradiate tetrahedral hohlraums on the NIF.
Instead of diverting 24 of the 48 beams to the equatorial region
of the target chamber, as for direct drive, one diverts 20 beams,
all 8 beams from each of the rings at 50° and 2 beams from each
of the rings at 30°, to the equator. On-capsule uniformity of
∼2% throughout the pulse can be obtained. The main uncer-

tainty appears to relate to issues of clearance through the
LEH’s; this is a greater problem than for cylindrical hohlraums
because some laser beams intersect the hohlraum wall close to
the LEH’s. Clearance of the capsule plasma is not significantly
different in the two cases. While tuning may not be necessary
for a tetrahedral hohlraum, appropriate tuning (which could be
time independent on OMEGA and time dependent on the NIF)
can enhance the uniformity with a minimal energy penalty.

Tetrahedral hohlraums have an intrinsically better unifor-
mity than cylindrical hohlraums, but suffer the disadvantages
of being fully 3-D, harder to model, and harder to diagnose
experimentally. However, with advances in modeling and
diagnostic capabilities, these disadvantages may become
minor.  At the very least, tetrahedral hohlraums merit consid-
eration as an alternative route to indirect-drive ignition and
gain on the NIF. The OMEGA laser is ideally suited to carry
out proof-of-principle experiments on tetrahedral hohlraums.
The first such experiments are being planned in collaboration
with the Los Alamos National Laboratory and the Lawrence
Livermore National Laboratory.

More details on the work reported in this article can be
found in Ref. 22.
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