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Stimulated Brillouin scattering (SBS) in a plasma1 is the decay
of a higher-frequency light wave into a lower-frequency light
wave and an ion-acoustic wave. There is considerable current
interest in the near-forward SBS of one2,3 and two4–6 laser
beams because of its relevance to inertial confinement fusion
(ICF) research.7,8

The indirect-drive approach to ICF8 involves multichro-
matic laser beams that overlap as they enter the hohlraum. SBS
allows the frequency components of one beam to interact with
the frequency components of another beam. Because a power
transfer between the beams affects the implosion symmetry
adversely, it is important to understand this process.

Consider the interaction of two crossed laser beams (A and
B) that have a common carrier frequency ω0. The ponderomo-
tive force associated with the beams drives an ion-acoustic
(sound) wave (grating) of wave vector k k ks a b= −  and fre-
quency ωs = csks, as shown in Fig. 67.8(a). In turn, the grating
scatters the laser light from one beam direction to the other.
This interaction is governed by the equations3,6
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 are
the electron quiver velocities associated with the laser fields
divided by a characteristic speed that is of the order of the
electron thermal speed and n is the electron-density variation
associated with the grating divided by the background elec-
tron density. In Eq. (1), ξ and η represent distance measured
along the propagation directions of the beams, as shown in
Fig. 67.8(b). The time derivatives were omitted from Eqs. (1)
because the time taken by the beams to cross the interaction
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region is much shorter than the time taken by the grating to
respond to the ponderomotive force.

Previous studies of the interaction of two crossed laser
beams4–6 assumed that the beams were monochromatic. If
the beam frequencies are equal, there is no power transfer in
steady state. Conversely, if the beam frequencies differ, in
steady state there is a monotonic transfer of power from the
higher-frequency beam to the lower-frequency beam.

In this article we allow the beams to have many frequency
components and study the power transfer between the beams

P1576

(a)

(b)

ka

kb

ks

2φ

ηA

B
ξ

w

Figure 67.8
Geometry of the interaction of crossed laser beams. (a) Wave vectors of the
laser beams and the ion-acoustic wave. (b) The beam widths are equal and
denoted by w; the beam intersection angle is denoted by 2φ. The character-
istic coordinates ξ and η measure distance in the propagation direction of
beam A and B, respectively.
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and the associated frequency cascade. For simplicity suppose
that each beam has two frequency components with a fre-
quency separation equal to the sound frequency. Subse-
quently, other frequency components are generated by the
interaction, with the same frequency separation that was pres-
ent initially. One can highlight this frequency cascade by
writing
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where ωj = jωs and

n M i t N i ts s= −( ) + ( )exp exp .ω ω (4)

By substituting definitions (3) and (4) in Eqs. (1) and (2),
and making the substitutions

A I A B I Bj j j j
1 2 1 2→ →,    ,

2 22 2ω ω ω ωs s s s s sv I M M v I N N( ) → ( ) →,    ,

γξ ξ γη η→ →,     ,and

where I is the intensity of beam A as it enters the interaction
region and γ ω ω ω ω= e s s sI v c2 2

04  is the spatial growth rate
of SBS, one can show that
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The distance variables ξ and η range from 0 to l, where l is
the number of SBS gain lengths over which the interaction
occurs. The dependence of l on the beam and plasma param-
eters is discussed in detail in Refs. 4 and 6. In recent simu-
lations4 and experiments9 relevant to ICF, the idealized values
of l were 10 and 20, respectively. Although small-scale inho-
mogeneities of the beams and plasma can reduce the value of

l in experiments,9 it is potentially large enough to warrant a
detailed study of crossed-beam interactions in ICF.

Because of the intrinsic complexity of the frequency cas-
cade, we began our study with the one-dimensional (1-D)
equations
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where x represents distance measured along a line that bisects
the angle between the ξ and η axes. The 1-D cascade Eqs. (6)
and (7) are generalizations of equations that arise in the study
of the beat-wave accelerator.10,11

A truncated set of 1-D cascade equations that allow each
beam to have 20 frequency components was solved numeri-
cally, subject to the boundary conditions A1(0) = A0(0) = 1
and B1(0) = B0(0) = ρ. The intensities of the first ten fre-
quency components of each beam, at discrete distances from
the boundary, are displayed in Figs. 67.9 and 67.10 for the
case in which ρ = 0.3. Although the “microscopic” evolution
of the individual frequency components is complicated, cer-
tain trends are evident in the figures; most of the power
contained in beam A is transferred to beam B, then returned
to beam A. As power is exchanged, the average frequencies
of the beam spectra decrease and the range of frequencies
over which power is distributed increases.

Motivated by the apparent periodicity of the power ex-
change, we plotted the total beam intensities

P A Q Bjj jj= =∑ ∑
2 2
,      (8)

and the grating strengths

R M S N= =2 2,      (9)

as functions of distance. The evolution of these “macroscopic”
quantities is displayed in Fig. 67.11 for the case in which
ρ = 0.3. Despite the complexity of the microscopic evolution,
the macroscopic evolution is periodic and predictable! To test
the robustness of the observed periodicity, the 1-D cascade
equations were solved numerically for boundary conditions
that included phase shifts between the beams (complex ρ)
and between the frequency components of each beam. In all
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cases the macroscopic evolution was unchanged. This result
prompted an analytic analysis of the macroscopic evolution.

It follows from the 1-D cascade equations that

d P R S d Q R Sx x= − −( ) = −( )2 2,     (10)

and

d R R P Q d S S P Qx x= −( ) = − −( )2 2,     . (11)

Equations (10) are valid for arbitrary boundary conditions on
beams A and B. Terms were omitted from Eqs. (11) that equal
zero for the boundary conditions described between Eqs. (7)
and (8). There are three conservation laws associated with
these model equations. The first is P + Q = T, where T = 2 +
2r is the sum of the initial beam intensities. The second is

R + S = U + TQ − Q2, where U r= − ′2 , and the third is RS =
V, where V = r2 is the product of the initial grating strengths.
By using these conservation laws, one can eliminate R, S, and
P from the model equations, which reduce to the potential
equation

d Q Q Q r Q Q rx( ) = −( ) −( ) − −( )2
4 2 2 2 2 . (12)

It follows immediately that Q oscillates regularly between 2r,
the initial intensity of beam B, and 2, the initial intensity of
beam A. As a bonus, Eq. (12) can be solved analytically.12

The result is

Q x
r

r x m
( ) =
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2
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where sn(2x, m) is the elliptic sine function of argument 2x

Figure 67.9
Frequency spectra of beam A obtained by solving the 1-D cascade Eqs. (6)
and (7) numerically.
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Figure 67.10
Frequency spectra of beam B obtained by solving the 1-D cascade Eqs. (6)
and (7) numerically.
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and order m = 1 − r2. Solution (13) is compared to the numeri-
cal solution of the 1-D cascade equations in Fig. 67.12. The
agreement is excellent. It follows from solution (13) that the
spatial period of the power exchange

l K m= ( ), (14)

where K(m) is the complete elliptic integral of the first kind.
For an initial intensity ratio r = 0.09, l ≈ 3.8, in agreement
with Fig. 67.12. One can obtain the same result by using the
simpler formula l r≈ ( )log 4 , which is valid for r << 1.

In contrast to monochromatic illumination, which results
in a monotonic transfer of power from one beam to the other,
multichromatic illumination results in a periodic exchange
of power between the beams. The main difference between
the two cases is the presence of grating N in the latter, which
allows energy to be transferred from the higher-frequency
components of beam B to the lower-frequency components
of beam A. This assertion is supported by Fig. 67.11(b), in
which the growth of grating N after beam A has been depleted
is a precursor to the transfer of energy from beam B back to
beam A.
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Figure 67.11
Periodic evolution of (a) the beam intensities P (solid line) and Q (broken
line), and (b) the grating strengths R (solid line) and S (broken line) obtained
by solving the 1-D cascade Eqs. (6) and (7) numerically.

Figure 67.12
Comparison of the evolution of the intensity of beam B predicted by the
1-D cascade Eqs. (6) and (7) and the potential Eq. (12). The two results are
visually indistinguishable.

To test the validity of the preceding 1-D results, we inte-
grated the two-dimensional (2-D) cascade Eqs. (5) and (6)
numerically, subject to boundary conditions that are the 2-D
analogs of those described between Eqs. (7) and (8). When
the beams intersect as they enter the plasma, the interaction
region is a triangle. When the beams intersect after they have
entered the plasma, the interaction region is a rhombus.

The results for the triangular interaction region are dis-
played in Fig. 67.13. Light shading represents high beam
intensity and grating strength, whereas dark shading repre-
sents low beam intensity and grating strength. The beam and
grating evolution is periodic in the x direction, and the growth
of grating N is a precursor to the transfer of power from beam
B back to beam A, as predicted by the 1-D cascade equa-
tions. Within the interaction region, the 1-D and 2-D results
agree quantitatively.

The results for the rhomboidal interaction region are
displayed in Fig. 67.14. Clearly, the beam evolution is not
periodic in any direction. Although 2-D rhomboidal geome-
try suppresses the periodicity that is characteristic of the
1-D and 2-D triangular geometries, it does not suppress the
effects of multichromatic illumination completely. Under
monochromatic illumination p a s r, , exp0 2( ) = −( )ξ : the inten-
sity of beam A decreases as it propagates near the entry
boundary of beam B, as shown in Fig. 66.33 of LLE
Review 66 (see Ref. 6). In contrast, under multichromatic
illumination p rξ ξ, cosh0 1 4( ) = + ( ) : the intensity of beam A
increases slowly as it propagates near this boundary, as shown
in Fig. 67.14(a). Once again this qualitative difference is due
to grating N, which is strong near the aforementioned bound-
ary, as shown in Fig. 67.14(b).
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In summary, the power exchange between two crossed
laser beams was studied analytically and numerically. Multi-
chromatic illumination and two-dimensional geometry are
both capable of changing the qualitative character of the beam
evolution, so their effects should not be overlooked.
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Figure 67.13
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Grayscale plot of (a) the total intensity of beam A and
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