
Self-consistent Cutoff Wave Number of the Ablative 
Rayleigh-Taylor Instability 

The Rayleigh-Taylor instability occurs at the interface be- 
tween heavy and light fluids when the heavy fluid is accelerated 
by the light fluid. The classical treatment1 of a sharp interface 
shows that a small perturbation at this boundary will grow as 
eY1, where y = is the linear growth rate, k is the mode 
wave number, g is the acceleration, and 

is the Atwood number (ph and pl are the heavy- and light-fluid 
densities, respectively). The ablation front of an inertial- 
confinement-fusion (ICF) imploding target is subject to this 
instability because the compressed target is accelerated by the 
low-density ablating plasma. If small perturbations caused by 
either target imperfections or illumination nonuniformity 
grew classically, they would grow to sufficient amplitude to 
destroy the shell of the target and degrade the performance of 
the implosion. However. because the shell material is ablated 
by the laser, the growth is reduced with respect to the classical 
value and, for sufficiently short wavelengths, the instability is 
s ~ ~ ~ r e s s e d . ~ - ' ~  Thus, only those modes with wave number k 
smaller than a critical value (k < kc,  where kc is the cutoff wave 
number) are unstable. 

The calculation of the cutoff wave number of the unstable 
spectrum has been previously attemptedby several  author^.^^^^'^ 
The most common analytic models of the Rayleigh-Taylor 
instability of laser-illuminated pellets consider inviscid and 
incompressible fluids. The incompressible m ~ d e l ~ , ~  is not 
self-consistent as the equilibrium and the perturbations are 
described by different equations. In this model, the equilib- 
rium flow is compressible (V .U # 01, but the perturbation is 
assumed to be divergence-free (V.V = 0) .  The incompress- 
ibility condition leads to a fourth-order differential equation 
for the perturbation that can be analytically solved. In other 
models?,6 the assumption of a divergence-free perturbation 
has been removed by retaining the effects of finite thermal 
conductivity. However, because of the difficulties in determin- 
ing the analytic solutions, a sharp-boundary model has been 
used in representing the equilibrium.5 Such an approximation 

to the equilibrium is not self-consistent since the plasma 
density in the blowoff region cannot be approximated by a flat 
profile. Subsequently, the growth rate has been calculated 
using a sharp-boundary model for the perturbations and a 
diffuse density profile for the equilibrium. l1 The density jump 
across the ablation front is calculated by retaining the thermal 
conductivity, and the derived growth rate is in good agreement 
with Takabe's numerical resu1ts.l Nevertheless, such a model 
is still not self-consistent since the equilibrium and perturbed 
quantities satisfy different equations. A more accurate treat- 
ment of the effect of finite thermal conductivity in a diffuse 
density profile can be found in Ref. 9, where the growth rate of 
the instability is calculated semi-analytically by matching the 
analytic solution in the overdense region with the numerical 
solution in the blowoff region. The first truly analytical esti- 
mate of the cutoff wave number for direct-drive ICF without 
radiation effects (v  = 2.5), including the effects of finite 
thermal conductivity, is derived in Ref. 10. In that work, the 
Wentzel-Kramers-Brillouin (WKB) approximation is used to 
determine the solution in the downstream region assuming that 
the mode wavelength is smaller than the density-gradient scale 
length and the cutoff wave number is derived by connecting 
that solution with the one in the upstream region. 

It is noteworthy that numerical simulations of indirect-drive 
ICF capsule implosions have shown a different growth rate of 
the instability in comparison with direct drive. We attribute this 
difference to the mechanism of energy transfer that, in indirect- 
drive ICF, is dominated by radiation transport over electronic 
thermal conduction. According to the simple model of Ref. 13, 
the heat flux transported by radiation heat conduction is 

where U p  = 4 o T 4 / c  is the equilibrium radiation energy den- 
sity and I is the Rosseland mean free path. The energy flux can 
be written in terms of the gradient of temperature and an 
effectiveradiationthermal conductivity K = 160 T31/c, where 
the radiation mean free path 1 is assumed to be proportional to 
some power of the temperature and density. Since the pressure- 
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gradient scale length is much larger than the density and 
temperature gradient scale length in the ablation front ( p  2. 

const), the radiation heat conduction has a strong dependence 
on the temperature. Thus, it became clear that a cutoff wave 
number formula valid for a general thermal conduction law 
was needed. In this article, the formula for the cutoff is derived 
for an arbitrary power-law dependence of the thermal conduc- 
tivity (K - TV) with v > I ,  and it can be applied to a wide class 
of equilibria described by different values of v. The corre- 
sponding eigenfunction is found by performing a "boundary 
layer" analysis of the solution in different regions of the 
density profile. The asymptotic matching of the eigenfunction 
through the boundary layers leads to an eigenvalue equation 
for the cutoff wave number. The analytically derived formula 
for the cutoff wave number is in excellent agreement with the 
numerical results of Ref. 6 for v > 1. 

with the boundary condition 5 + -) = I . Equation (5) yields 
the density-gradient scale length L = h/[< ' ( l -  <)I, and its 
minimum value6 is proportional to 

Although Eq. (5) cannot be solved analytically, an approxi- 
mate solution can be found in the proximity of the peak density 
(6 = I or overdense region) and the blowoff region (5 << I): 

The Model Equation (6) shows that the density gradient is sharp near 

We consider an ablatively accelerated fluid in steady state. the peak density where L = Lo and becomes smooth in the 
In the frame of reference of the ablation front, the evolution of blowoff region where L = -vy and -y >> Lo. It is important to 
the mass density p and the velocity v are described by the observe that the density-gradient scale length is determined by 
isobaric model of Kull and ~nisirnov'  the thermal conductivity coefficient, the mass ablation rate, 

and the exponent V. The density profile becomes smoother as 

(1) 
K, or v increases. 

- -"+v . ,v=  0 
at  

Linear Stability Analysis 
Since the equilibrium depends on the spatial coordinate y 

p - + v . v v  = -vp+pg  [ZZ 1 (2) only, the perturbation can be Fourier decomposed in the x 
direction; i.e. Ql = Q ( ~ )  exp (ikr + y t )  where y  i 0' for 
wave numbers approaching the cutoff ( k  i k ; ) .  The linear- 

V.[v+&Va$] = 0, (3) ized conservation equations can be written in the following 
dimensionless form: 

where g = ge,(g < 0), < = plp, is the density normalized to 
its peak valuk p,, and Lo is the typical length of the ablation 
front 

Here. K, is the thermal conductivity at the peak density, 
A = mi/(l + Z) is the average particle mass, and yh is the ratio 
of specific heats. The parameter Lo can be related to the 
density-gradient scale length L = p(dp/dv)-l. Following 
Ref. 6, the equilibrium density profile can be obtained by 
combining Eqs. (1) and (3) into a single first-order differential 
equation 
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where 
(a; - 1 )  + a,) 

Fr = v:/lg(h is the Froude number, i = k y .  r, = - y/kVa , 
v = k-'V, 6, = k,L+ (k , is the cutoff wave number), [E, - +T, - E ~ )  Gh e x p ( i / ~ , )  = 0 .  (9) 

i = L / & ,  and 
where r,, + 0- and the superscript h denotes the heavy-fluid 

- - 
v - P .  i;- - .  - p .  P region. The solution of Eq. (9) can be written in the following n = -  , 7L=- = - 

P ' Va pa@ ' ( ~ + 2  (7e) form: 

Equations (7a)-(7d) can be easily combined into a single 
ahe-< + bhea-? + the? 

fifth-order differential equation for the density perturbation: 

where ah, bh, ch, dh, qh are integration constants and 

[(rue + a,) 6 ev + E ,  c26] 
a* = [1k\l-]/2E. 

Here, V, > 0 and r, + 0- . Equation (8) is an eigenvalue 
equation for the cutoff wave number kc(€,= kc&,). We focus 
on equilibria characterized by Fr > 1, v > 1 ,  and we order 
E, - Fr"'-v . The validity of this assumption will be verified 

later by the matching conditions for the eigenfunction. In ICF, 
the Froude number varies significantly according to the target 
acceleration and the thermal conduction law. For the set of 
equilibria parameters considered in Ref. 4, 5 < Fr < g .  and it 
can be significantly lower for the equilibria considered in 
Ref. 14. The eigenfunction must satisfy the boundary condi- 
tions of vanishing perturbation at infinity; i.e., i ( f  -) = 0 ,  
(k -) = 0. and (k -) = 0 .  Because of the variable scale 

length of the eigenfunction, three regions have been identified 
(Fig. 63.25): the overdense region (heavy fluid), the ablation 
front, and the blowoff region. 

1. The Overdense Region 
In ICF capsule implosions, the overdense portion of the 

shell represents the heavy-fluid region where ; - 1 ,  
p = p a ,  5 = 1 -exp(- ;Isc) + 0[exP(-2?/~,)]. and L >> LO. 
In this region and to lowest order in exp(-it€,), Eq. (8) 
reduces to a constant-coefficient fifth-order differential 
equation 

To satisfy the boundary conditions of vanishing perturbation 
for j + + -, ch = dh = qh = 0 and Eq. (10) reduces to the 
simple form 

It is important to observe that tht: incompressible theory 
(V .i = 0) yields only the sonic solution 

Heavy I Ablation I 

fluid I front I 
I 
I 
I Blowoff 

I 

Fig. 63.25 
Density profile with regions of different scale length of the perturbations. 

Here 1 is the mode wavelength. 
- 
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pwnic - exp [-j - j/€]. 

Equation (1 1) shows that anew solution is introduced by the 
finite thermal conductivity. Because of the diffusive character 
of thermal conduction, we denote the second term in Eq. ( I  1) 
as the diffusion or entropy solution. Since the mode amplitude 
is arbitrary, we set ah + bh = 1, define the ablation front variable 
z = j/tc, and expand the solution for z - 1 and E, << 1. A 
short calculation yields 

Here, d, = <"+'(l-5)dt, i = c!-"/(l-{),and z = j/~, 
is the ablation front coordinate ( z  - 1 in the ablation front 
region). We look for a solution of Eq. (13) in the form of an 
t ,series Qa = xy=o 67 E:), and we calculate all the terms 
up to third order in E ,: 

Equation (14a) yields the following five homogeneous solu- 
Each power of z in Eq. (1 2) needs to be matched to the ablation tions: 
front solution. 

1 - 5  

=T 
y l=% 5 

2. The Ablation Front Region 5 4 (1 5 4  
The ablation front is the region where the density, velocity. 

and temperature profiles undergo a sharp variation. In this 
region, j - E,, L - I ~ , a n d  5 - 1.Since 5 - l ,Eq.(5)can- l+vqV(q-1)-77'' 

not be solved in this region, and an explicit expression for the + (  - 77)2 

spatial dependence of the density profile cannot be found. 
Thus, it is more convenient to use 4 as the independent 
variable. By denoting with 6" the solution in the ablation y3 = 
region and after some straightforward manipulations, Eq. (8) 
can be rewritten in the following operator form: 

where where the function ~ ( 5 )  is derived from Eq. (5): 

4 = - d : i - ~ ~ i ( d , ( ~  +a:) (1%) (to is the density at ,: = 0). Matching the zeroth and first-order 
solutions with the heavy-fluid solution yields 6: = Yo and 
67 = - ( l -  bh)Y1.  The second- and third-order equations 

5 v + 2  [Eqs. (14c) and (14d)l are not homogeneous and require a k = -  
E, Fr combination of homogeneous and particular solutions to 

match the heavy-fluid solution. A long calculation leads to 
the following form of 6; and 6; : 

L, = a , ~ - I .  ( 1 3 4  
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x J;dx 
1 - x v  1 [-+--I. 1-bh  1 (17,) Substituting Eqs. (19) and (20) into Eq. (18a) and collecting 

x2'+'(l- X) v E,. Fr v + 1 x 
terms up to the first two orders in llv leads to the following 
equations: 

3. The Blowoff Region 
The light-fluid or blowoff region is located downstream 

d j  (J; - I] 5(a: - 116; = 0 
with respect to the ablation front. In this region, -? - 1, L >> 

(2 1 a) 

Lo, and 5 ;- (-4 /vy)llV << 1 The analysis can be simplified 
by introducing the new variable 5 = E,/V tV and rewriting 
Eq. (8) in the following form: 

where 

Here, d j  = -(I - 5) a5 and 4 = (E, / v ~ ) " ~ .  Equation (1 8a) 
cannot be analytically solved for arbitrary v. However, since 
v > 1 for both direct- and indirect-drive ICF, one could 
attempt to solve Eq. (18a) by performing a l lv expansion of 
the operator and eigenfunction. Such an approach is reasonable 
for radiation-dominated transport in a fully ionized plasma 
as described in Ref. 13 (v  - 5-8) but less convincing for 
electronic transport with v =  2.5. Thus, to check the validity of 
the expansion, we compare the analytical solution with the 
numerical results for v = 2.5. Based on that comparison, we 
deduce whether or not the l lv expansion is a valid approach to 
the solution of Eq. (18a) in the regimes of interest for direct- 
drive ICF. 

The next step is to rewrite the operator M and the 
eigenfunction 6l as power series in l lv:  

Ilv where 6 = (E,. /v) . We first solve the lowest-order equation 
[Eq. (21a)l. The solution of Eq. (21a) that satisfies the bound- 
ary conditions of vanishing perturbations at infinity can be 
written as a linear combination [&A = A1&; + ~'6; + c[&;] 
of the following homogeneous decaying solutions: 

(Note that in the light-fluid region -m < j <  0 .) To determine 
the constants of integration (A1, R ~ ,  d), the solution in the 
ablation front must be asymptotically matched to the solution 
in the light-fluid region. To perform the matching of the 
eigenfunction, it is necessary to expand the ablation front 
solution in powers of (llv). A short calculation yields 
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- 1-6 1 1 n s  s Matching equal powers of l / v  in Eqs. (23 )  and (25 )  leads to 
= + - - - + - ( I - b h )  

6 v 6  6 the following relations: 

-l/v - I  1 
- = (5) + 2  [I - [$) ' Iv  ] . (27 )  
E ,  Fr + 

In Eq. (27 )  all the terms up to first order in I/v are retained. 
Higher-order terms in l l v  can be derived by solving Eq. (1  8a) 
to next order in l l v  and matching the solution with the I/v + 

2  E,. Fr  ' (23) expansion of the ablation front s o l ~ t i o n . ' ~  Using the results of 
Ref. 15, Eq. (27 )  can be rewritten in the following form: 

Matching the lowest power of l / v  yields A' = (1 - 6 ) / 6 ,  11" 
"0") t y V  A ~ ( E . . )  ~ ~ ( t ~ )  = B' = 0 ,  and C1 = 0. The next step is to determine the first- Ec= - l - ~ ~ ( v ) E t v  . (28 )  

Fr 
order correction to 6' by substituting 6; into Eq. (21b) and 1  + PO (4 EC 

- 1  . solving for 6;. Combining 6; and glves the solution of 
the light-fluid equation up to first order in Ilv: Here, po ( v )  = (2 / v ) ' " ' / r  ( I  + l / v ) ,  E,= kcLo, and ATis an 

effective Atwood number depending on the mode wavelength. 

where C: is determined by matching Eq. (24 )  with the ablation 
front solution [Eq. (23 ) ] .  To perform the matching, we rewrite 
61 for 5 + 0: 

Discussion 
The physical interpretation of the Atwood number in 

Eq. (28) is straightforward and may help to resolve the contro- 
versy about the right value of AT to be used in the growth rate 
formulas. The classical definition of the Atwood number for a 
heavy fluid of constant density ph superimposed on a light 
fluid of constant density pl is AT = ( p h  - p l ) / ( p h  + p l ) .  
However, for a monotonic diffuse density profile, the appro- 
priate definition is AT = ( p t  - p - ) / ( p i  + p - ) ,  where pi and 
p-are the fluid densities calculated at some points where the 
eigenfunction is evanescent. For long-wavelength modes ( E  , 
= k A o  << I ) ,  the eigenfunction for fi decays exponentially 
fi - e p k l y  and becomes evanescent at a distance d  of some 
wavelengths 1 from the peak y = 0 (d  = 01, where 0 is a con- 
stant of order unity). Thus, the Atwood number should be 
defined by setting pi = p(d) and p- = p(-d). Using the equi- 
librium density profile p  = (pa  yields 

S3  1-6 1 p ( d )  = pa + ~ ( e - l l ' ~  ) + 6 ( 1 6 ) 3  ( - d + ; [ c i ( 1 n 2 + f ) - 3  
and 
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and the Atwood number of Eq. (28) is recovered by choosing 
8 = 1/27cvp;. It is important to observe that Eq. (28) can 
also be obtained by balancing the classical growth rate 
y,,i = m& with an effective ablation damping yah = 
-kVeff, where Veff is the geometric average of the ablation 
velocity evaluated at distances d and -d from the peak of the 
eigenfunction, Veff = &(d) v(-d). Setting y - y,, + yab = 0 
yields Eq. (28) for the cutoff wave number. 

To test the validity of the l lv  expansion, we compare the 
cutoff wave number obtained by solving Eq. (28) with the 
numerical results available in the literature. Figure 63.26 
shows a plot of the normalized cutoff wave number k,~: Ig 
versus the inverse Froude number. The solid line represents the 
solution of Eq. (28), and the dashed-dotted line represents the 
numerical results of Ref. 6 for v = 2.5. The remarkable 
agreement shown in Fig. 63.26 implies that the llvexpansion 
is quite accurate even for v = 2.5. The disagreement in the 
regime of Fr << 1 is due to higher-order E ,  corrections that 
become important for modes with wavelength shorter than the 
thickness of the ablation front. Figure 63.27 shows aplot of the 
normalized cutoff wave number versus v for Fr = 5. The solid 
line represents the solution of Eq. (28) and the dots are the 
numerical results of Ref. 6. Observe the excellent agreement 
between the analytic and numerical results even in the region 
v -  1 .  

Fig. 63.26 

Comparison of the normalized cutoff wave number ( k , ~ : / ~ )  obtained from 
Eq. (28) (solid line) with the numerical results of Ref. 6 (dashed-dotted line). 

Fig. 63.27 
Plot of normalized cutoff wave number k,Lo versus v for Fr = 5. The solid 
line represents the solution of Eq. (28) and the dots are the numerical results 
of Ref. 6. 

For electronic thermal conduction v =  2.5 and Eq. (28) can 
be compared with the analytic estimate of Ref. 10 that can be 
written in the following form: 

Observe thatEq. (29) differsfromEq. (28) by t e r m ~ p ~ ( 2 . 5 ) .  
Since ~ ~ ( 2 . 5 )  = 1.03, Eqs. (28)-(29) yield very similar results 
for electronic heat conduction. However, when diffusive radia- 
tion transport13 dominates over electronic heat conduction. 
the thermal conductivity has a strong dependence on the 
temperature (v - 5-8) and Eq. (29) is not valid. In this case, the 
general formula (valid for arbitrary v > 1) derived in this article 
must be used to calculate the cutoff wave number. According 
to Ref. 13, v = 6.5 for a fully ionized gas; Fig. 63.28 shows 
the corresponding normalized cutoff wave number as a func- 
tion of the inverse Froude number obtained by solving 
Eq. (28). We recognize that an accurate estimate of the cutoff 
wave number requires a more complete model of thermal 
conduction than the one described here. A multigroup treat- 
ment of the diffusive transport, as adopted in sophisticated 
codes such as LASNEX,'~ would probably lead to a more 
accurate result than the one of Eq. (28). Nevertheless, by 
judiciously choosing the values of vand Lo, it is possible to fit 
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:::: 111 cv-l 

- - 2  - = C - 
h l  I 

Lo " - i:) i=, v - i  

Equation (3 I) yields L, = 14 Lo and Le = 190 Lo for v = 

2.5 and v = 6.5, respectively. Lastly, we compare the cutoff 

0.001 0.01 0.10 1.00 10.0 100.0 wave number derived here with the one produced by the 

(Fr)-I 
incompressible theory of long-wavelength modes (kL << 1) 

TC3891 or sharp boundary m o d e ~ s . ~ , ~ ~  These non-self-consistent deri- 
vations lead to growth rates of the form y = @g - pkV,, , 

Fig. 63.28 where AT = (Ph - pI) / (ph + P r )  is the Atwood number for 
Plot of the normalired cutoffwave number ( k ,  V,? 18) obtained from Eq. (28) flat profil,, and p = 1 or 1.5. B~ = 0, the incorn- 
for v = 6.5 as a function of the inverse Froud number. pressible model yields acutoff wave number E,= Fr)  , 

quite different from the one satisfying Eq. (28). 

the equilibrium density profile obtained in the numerical 
simulations with the solution of Eq. (5). Obviously, different Conclusions 

equilibria require different values of v and Lo. Using such The cutoff wave number of the ablative Rayleigh-Taylor 

in Eq. (28) should produce a reliable formula for the instability iscalculatedself-consistently foranarbitrary power- 

cutoff wave number with the appropriate values of the Atwood law dependence of the thermal conductivity ( K  - TV). The 

number and the ablative stabilization term. cutoff formula is valid for v  > I and Fr = V: Ig& > I. Here 
V,, g. and Lo are the ablation velocity, the target acceleration, 

To simplify the use of Eq. (28), the scale length Lo is related 
to the distance L, between the peak density and the lle point. 
The latter is the characteristic scale length widely reported in 
the literature. The isobaric model used here does not produce 
a maximum in the density and, in the overdense region. the 
density profile approaches the maximum value at infinity. 
Nevertheless, one can define an equivalent length as the 
distance between the point where the density is 4 = lle and the 
point where the density is 5 = t o ,  where to = 0.95. A different 
choice of to such as to = 0.99 or to = 0.999 would only slightly 
change the results as the density becomes exponentially flat in 
the overdense region. To determine L,, the density profile is 
implicitly calculated by using Eq. (16), where z = y / &  and 

= 0.95. The integration in Eq. (16) can be carried out for 
integer or half-integer values of v. A short calculation yields 

m e ~ - l  

- - z  - = C - 
Le - (1.) ;=, v - i  L, 

and the typical thickness of the ablation front, respectively. 
The derivation is carried out by expanding the eigenvalue 
equation in powers of I lv  and E = kLo and by performing a 
boundary layer analysis and asymptotic matching of the 
eigenfunction. The validity of the formula has been tested with 
the numerical solution of Ref. 6 up to values of v close to I ,  
and the formula can be used for those equilibria (such as in 
indirect-drive ICF) that cannot be described by electronic heat 
conduction ( v  = 2.5 and F r  - 5). 
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