
Multiple Cutoff Wave Numbers of the Ablative 
Rayleigh-Taylor Instability 

The Rayleigh-Taylor instability occurs at the interface be- 
tween heavy and light fluids when the heavy fluid is accelerated 
by the light fluid. The classical treatment of a sharp interface 
shows that a small perturbation at this boundary will grow as 
err ,  where y is the linear g0wth.l  The ablation front of an 
inertial confinement fusion (ICF) imploding target is subject to 
this instability because the compressed target is accelerated by 
the low-density ablating plasma. If small perturbations caused 
by either target imperfections or illumination nonuniformity 
grew classically, then these small perturbations would grow to 
sufficient amplitudes to destroy the shell of the target and 
degrade the performance of the implosion. It has recently been 
shown by several  author^^-^ that the ablation process will 
actually reduce the Rayleigh-Taylor growth rate at this inter- 
face and can, in fact, stabilize the interface at sufficiently short 
wavelengths. Calculations of the cutoff wave number for a 
diffuse density profile were carried out by ~ ~ 1 1 ~  and by Bud'ko 
and ~ i b e r m a n . ~  Using the assumption that the cutoff occurs 
at wavelengths shorter that the density-gradient scale length 
L = [(l/p)(dp/dv)]-l, Bud'ko and Liberman8 used the geo- 
metrical optics approximation of the Wentzel-Kramers- 
Brillouin (WKB) theory to derive the cutoff wave number in 
the limit of v,/@ + 0 ,  where V, is the ablation velocity of 
the overdense portion of the target. 

The role of the parameter X = v,/& can be easily 
deduced by using the following intuitive form of the instability 
growth rate, y - - kV, . By setting y = 0, it is 
easy to show that for X >> 1 the cutoff wave number occurs 
at wavelengths longer than the density-gradient scale length 
(kc L - l / x2  << 1 )  On the contrary. for X << 1, the cutoff 
occurs a wavelength shorter than L ( k , . ~  - 1/C >> 1). The 
relative size of the cutoff wavelength to the density-gradient 
scale length suggests the type of mathematical technique that 
must be used. It is well known that short-wavelength modes 
with kcL >> 1 can be investigated using the WKB approxima- 
t ion,  and long-wavelength modes (kCL<<1) have a 
characteristic "boundary layer" structure in the sharp gradient 
region and can be studied with a sharp boundary model. 

In this article, we derive the physical optics approximation 
of the WKB theory applied to the ablative Rayleigh-Taylor 
instability for 1 << 1, and we show the existence of multiple 
branches in the instability spectrum. Each branch has a differ- 
ent cutoff wave number and an eigenfunction characterized by 
a different number of zeros. Furthermore, since in typical ICF 
targets the density profiles are rather steep (direct drive) or the 
ablation velocity is rather large (indirect drive), the parameter 
V, I@ is only approximately less than 1. The physical optics 
approximation also provides the next-order correction (in 
v,/@ < 1) to the largest cutoff wave number. 

The WKB Approximation 
We consider an equilibrium in the frame of reference of the 

ablation front with the heavy fluid of density p h  moving with 
velocity Uh = -V,ey (Fig. 60.4). The density smoothly varies 
from ph to a lower value pl, and the velocity increases accord- 
ing to the conservation of mass flow (pU = constant). The fluid 
is subject to a force field g = ge, opposite to the density gra- 
dient (g < O), and the density 'profile has a finite density- 
gradient scale length in the ablation region (y = 0) with charac- 
teristic value Lo [L(0)/LO - 11. To treat the linear stability of 
ablation fronts, we consider a simplified incompressible model 
for the perturbation that is valid for subsonic ablation flow (V, 
<< C,, where C, is the sound speed) 

where U is the equilibrium velocity and dldt = a/dt + V .  V. 

The set of linearized conservation equations can be written 
in the following form: 
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uni ty ,andweorder~ - Z < <  1 , ~ -  1, ~ = - g [ l + ~ ( ~ ~ ) ] , a n d  
a = 1 + o(E'). The validity of the chosen ordering will be 
verified a posteriori. We apply the WKB theory to the fourth- 
order equation, and we adopt the following ansatz for the 
perturbation: vy = ~ ( j )  ~ X ~ [ S ( ~ ) / E ] ,  where A( j) and S( j) 
are two slowly varying functions of j ,  i .e, ,  
a, ln S - 6'; In A - 1 .  The equation for ~ ( j )  (geometrical op- 
tics) can be easily derived by retaining the lowest-order terms 
(-1) in Eq. (5): 

I , , ,  1 1 1 1 1 1 1 1 1 1  1 , , , , I , ,  , L I B ,  8 , I , , *  

-6 -4 -2 0 2 4 6 

B This equation is identical to the one derived in Ref. 8. By 
TC7514 

focusing on the mode corresponding to the cutoff wave number 

Figure 60.4 kc [ ~ j m ~ + ~ ,  y(k) -t o + ] ,  we solve ~ q .  (6) for /TI << I and 
Density and velocity profiles. The wbscripts 1 and h indicate the light and find the four roots 
heavy fluid respectively. 

where 
where ~ = l / ( k ~ ~ ) ,  j = y / L o ,  ii = P I P ,  G = - ~ - u ' / L ,  
i = L/Lo, and r = y/kU. Equations (2)-(4) can be combined 
into a single fourth-order ordinary differential equation q k = l k 2 a ,  T- =- I_+- + [ 2 @) 

~ ( j )  = 11 4 - o 2 / L ,  and y is an arbitrary point. Observe that 
Eqs. (7)-(8) are valid for nonvanishing Q and the small t 

corrections are important only for + k-, where q- -t 0 ,  
and they can be neglected for any other value of 6 .  If Q 
vanishes at some point, Eq. (6) can be easily solved in the 
neighborhood of that point and T+ 0- yielding 

r 
S G f ( j  - j )  2 .  This result can also be recovered from 

+ i j Y o 2 / i  = 0, (5) Eqs. (7)-(8) by neglecting zcven for Q = 0. We emphasize that 
~. 

the parameter zis important for Sg and S4 only when /-$I + m . 
where a = - i d j  ln(U I G) and 02 = G / ~ ~ u ~ L ~ .  Since While in Ref. 8 the analysis is limited to the geometrical optics 
Eq. ( 5 )  cannot be solved exactly, we look for an approximate [Eqs.(6)-(8)], here we extend the solution to include the 
solution when the parameter Z2 = V: lg Lo is much less than physical optics approximation. By retaining the E corrections 
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in Eq. (6), the following expressions for A(;) are derived: solution valid for negative y. The necessary condition for the 
matching to occur is that ~ ( j )  vanishes at some point and the 
Aj7s become singular. The solid line of Fig. 60.5(a) represents 
a possible behavior of ~ ( j )  that would allow the matching. In 
general there must be two points (turning points) where Q 
vanishes ( j = jl and 5 = j2 with jl > i12 ) and at such points, 

A2 = a2 I;' ( j) the WKB approximation breaks down, i.e., the Aj's become 
(9) singular. By defining jo the point of minimum of 

A4 = a4F-(j) we order ~ ( 5 ~ )  -E and jl - $2 - &. This ordering is veri- 
fied later by the matching conditions of the solution between 
the turning points with the WKB approximations. As shown in 

114 Fig. 60.5(b), three regions can be identified: (1) the first outer 
1 

"(')= [&I Q I / ~ ( ~  2a)114 
, (1 0) region for j > jl, where 

6, = ~2 (j) exp[s2 (5 ) /~]  ; 

It is important to recognize that none of the eigenfunctions 
represented by Eqs. (7)-(10) satisfies the boundary conditions 
of vanishing amplitude at both +m and -m simultaneously. 
This observation is supported by the form of the exponential 
terms in Sj and Aj and by the asymptotic behavior of ~ ( j )  
[Fig. 60.5(a)]. It is readily derived from Eqs. (7)-(10) that in 
order to satisfy the boundary conditions at y + +m, the 
coefficients al ,  ag, a4 must vanish (a l  = a3 = a4 = 0 and 
a2  f 0). On the contrary, to satisfy the boundary condition at 
y + -m, the coefficient a2 must vanish (a2 = 0). Thus, the 
solution valid for positive y must be matched to a different 

(2) the second outer region for j < j 2 ,  where 

and (3) the inner region between the turning points i2 < j < $1. 

To determine the solution in the inner region, we look at the 
behavior of the solution in the first outer region for 
& << j, - io << 1 and approximate Q with its Taylor expan- 
sion Q = Qo + ~ ( ( i  - io)2 12. By setting = j o ,  a straight- 
forward manipulation yields 

Figure 60.5 
(a) Plot of Q versus );. The dashed line represents a behavior without zeros [l:ff2/i],, < 1/41, The solid line shows a Q();) with two zeros '02 i 
For large ();I, Q approaches 114. (b) Plot of the WKB solutions in the outer regions ); >> );, and ); << );>. 
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6, ( j  ;. j;) = ~~i~ exp [ - - : 4 ~ 6 ~ ~  - ] exp [ -- (yz)] , (11) 

where i = ( j  - jo) /&,  and 

The function given by Eq. (1 1) shows a two-scale structure (the 
two scales being E and 42 ), different from what is found from 
the familiar second-order WKB solution near the turning 
points. Thus, in order to perform the matching, the solution 
between the turning points must retain the two-scale structure 
and behave as 6, = ii(i)exp[-(j - jo)/& E]. Substituting 
into the general ~ 4 .  (6) and retaining the lowest-order terms in 
E leads to the following equation for ii : 

where 5 = i(Q;)'l4. The equation for ii is just a second-order 
equation (instead of fourth order) and can be exactly solved. 
The solution of Eq. (13) is the combination of two parabolic 
cylinder functions ii = BD, (5) + CD, (-5). Matching the in- 
ner with the outer solution for j > leads to C = 0 and 
B = ri2/(~{)Vi4 . To match the rapidly varying exponential 
{exp[-(j-jo)/fi E]} of the inner solution with the outer 
solution in the region .? < j 2 ,  the coefficients a and a3 of the 
outer solution must vanish. Therefore, as j, approaches j2 
(& << LO - j << I ) ,  the outer solution assumes the following 
form: 

where 

Focusing on the inner solution, the asymptotic behavior of the 
parabolic cylinder function is easily derived: 

where n is an integer. By matching the inner solution with 
Eq. (15), we immediately deduce that v must be an integer 
( v =  n with n = 0, 1, 2 ...), a4 = (-l)"a2, and 

( H ,  is the Hermite poly nomial). The condition v = n represents 
the equation for the cutoff wave number and can be rewritten 
in the extended form 

where E =  l / ( k , ~ ~ ) .  Observe that Eq. (18) yields Qo - E and 
o- 1, in agreement with the initial assumptions. Equation (18) 
can be solved perturbatively by expanding kc in powers of 
C < 1 (kc = ko - X kl ...). A short calculation yields the fol- 
lowing expression for the cutoff wave number 

where ko = 2 [ l g l / ~ ( j o ) ] ~ ~ ~ ~ u ( j , o ) l ,  P = dm ph/p(jO), 
andn=O,  1, 2 ... . 

Discussion 
The first important result of Eq. (19) is that multiple cutoff 

wave numbers exist for different values of n. In the y, k plane, 
this leads to an unstable spectrum characterized by multiple 
branches lying one below the other. The branch with the largest 
cutoff and therefore the largest growth rate is for n = 0. 
Although the lowest-order cutoff wave number ko was previ- 
ously found in Ref. 8, we emphasize the importance of the 
first-order correction to determine the existence of the multi- 
ple branches and to provide a more accurate formula for the 
n = 0 branch when C s 1. Table 60.1 provides a comparison 
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between the cutoff wave number of then = 0 branch predicted 
by Eq. (19) and the one of Ref. 8 for the following form of the 
density profile 

Table 60.1 Cutoff wave number for n = 0. Compar- 
ison of the cutoff wave number for the n = 

0 branch predicted by Eq. (19) and Ref. 8 
forA = 0.9, g = 5 x 1015 cm/s2, va = 7.5 x 
104 cmls, and varying Ln. 

Eq. (19) Ref. 8 

Observe that the first-order correction in Z becomes important 
when the density profile is rather steep (direct-drive ICF) or 
the ablation velocity is rather large (indirect-drive ICF). Since 
the eigenfunction in the inner region is proportional to Hn(5), 
the integer n determines the number of zeros of the 
eigenfunction. Figure 60.6 shows the normalized eigenfunction 
for the n = 0, n = 1 ,  and n = 2 modes for a smooth density pro- 
file. Observe the degradation of the matching between the 
outer WKB approximations and the inner solution as n in- 
creases. This effect is due to the increasing magnitude of the 
higher-order corrective terms that scale as C kl (n)/ko. Thus 
we expect that the matching cannot be performed for 
C k, (n)/ko > 1 and the number of branches does not exceed N 
with X kl(N)/ko > 1. Equation (19) has also been solved 
numerically, and the results have been compared with the 
analytical predictions. Figure 60.7 shows the unstable spec- 
trum of an equilibrium configuration typical of direct-drive 
ICF with g = 5 x 1015 cm/s2, V,  = 7.5 x lo4 cmls, A = 0.9, and 
Lo = 2 pm. Three branches have been found with n = 0, n = 1, 
and n = 2. For this set of parameters C kl (3)/ko = 1 .O 1, and the 
predicted number of branches is indeed N = 3. Equation (19) 
predicts the following values of the cutoff wave numbers: 
k,(n = 0) = 4.28 pm-l, k,(n = 1) = 2.83 pm-l, and k,(n = 2) = 

1.37 ,urnp1. As expected the accuracy of Eq. (19) in predicting 
the cutoff wave number degrades as n increases. For the same 
equilibrium parameters, the geometrical optics approximation 

k j )  Inner 

Inner 'I 
Figure 60.6 
Plot of the normalized eigenfunction = ir (;)exp[(j-jO)/&~], for then = 0. 1 , 2  modes and the following equilibrium parameters: 

Y - 
A = 0.8, g = 1015 cm/s2, v, = 104 cmls, and Lg = 10 pm. 
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TC3518 k (pm-l) 4 = theory 

Figure 60.7 
Plot of the growth rate versus the wave number for the n = 0, 1, 2 branches 
and the following equilibrium parameters: A = 0.9. g = 5 x 1015 cm/sZ, zl, = 

7.5 x 104 cm/s, and Lo = 2 pm. 

of Ref. 8 predicts a cutoff of the n = 0 mode at k = 5.5 pm-l 
with a relative error of approximately 30%. To simplify 
Eq. (19), we focus on typical ICF equilibria with A = 1 and 

expressions for 
approximate form of the cutoff wave number: 

and ko= (&%%)/CLO. In addition to the cutoff wave 
number, the WKB approximation also provides the position 
where the short-wavelength modes are localized. The peak of 
the eigenfunction is located at the point j* , where SIP*) = 0.  
Using Eq. (6) at 5 = j" we derive an equation for j : 

For any given r, Eq. (22) can be solved for the unknown j * .  
It follows immediately that the mode corresponding to the 
cutoff wave number (r = 0) has the peak of the eigenfunction 
at -m, where l / i  = 0 .  More generally, it can be deduced from 
Eq. (22) that as the wave number of the mode increases and the 
growth rate decreases, the peak of the eigenfunction is shifted 

downstream in the light-fluid region. To verify the accuracy of 
the incompressible model in predicting the unstable spectrum 
for C < 1, we compare the growth rates derived from Eqs. (2)- 
(4) with the numerical results of Ref. 3, where the full set of 
fluid equations, including thermal transport, has been numeri- 
cally solved. According to Ref. 3, the growth-rate dependence 
on the mode wave number is well fit by the following formula: 

where p is an adjustable parameter varying between 3 and 4. 
Figure 60.8 shows an unstable spectrum obtained from the 
numerical solution of the incompressible model for C = 0.14 
and Takabe's formula for P= 3 4 .  Observe that the predictions 
of the incompressible model (for C < 1) are in good agreement 
with the more general results of Ref. 3. For the same value of 
X, Eq.19) yields the normalized cutoff wave number 
&v:/~ = 0.26. To check the validity of the incompressible 
mode for arbitrary equilibria, we also compare the incompress- 
ible spectrum for X >>1 with the result of Ref. 3. We find that 
the incompressible model predicts a larger ablative stabiliza- 
tion than Eq. (23). For C >> 1, the incompressible growth rate 
can be written in the following form: 

in agreement with the results of Ref. 4. For A = 1, Eq. (24) 
predicts a large stabilization that is not observed in the numeri- 
cal  simulation^.^^^^^ We conclude that the incompressibility 
assumption breaks down for Z >> 1, and the effect of finite 
thermal conductivity must be retained.7 

Conclusions 
We have derived the physical optics approximation of the 

WKB theory applied to the incompressible ablative Rayleigh- 
Taylor instability, and we have found the existence of multiple 
branches in the unstable spectrum. The calculated cutoff wave 
number is also reasonably accurate for configurations with 
rather steep density gradients or large ablation velocity (C s 1) . 
Although this is the first derivation of the multiple unstable 
branches in the presence of an equilibrium flow, this result is 
not surprising, as in the classical Rayleigh-Taylor instability, 
multiple modes also exist. However, no branch experiences a 
cutoff in the classical treatment, and the growth rate is 
monotically increasing with the mode wave number. 

LLE Review, Volume 60 



ACKNOWLEDGMENT 
This work was supported by the U.S. Department of Energy Office of 

0.8 + Incomp. Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03- 
0 Takabe P = 4 92SF19460, the University of Rochester, and thc New York State Energy 

0.6 + Takabe /? = 3 o Research and Development Authority. The support of DOE does not consti- 
tute an endorsement by DOE of the views expressed in this article. 

REFERENCES 

1. Lord Rayleigh, Scientific Papers (Cambridge University Press, Cam- 
o + bridge, England, 1900). Vol. 11, p. 200. 

0 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
0 

0 1 2. S. Bodner. Phys. Rev. Lett. 33. 761 (1974) 

-0.2 11 -A 
0.0 0.05 0.10 0.15 0.20 0.25 0.30 3. H. Takabe, K. Mima, L. Montierth, and R. L. Morse, Phys. Fluids 28. 

3676 (1985). 

TC35 19 4. H. J. Kull and S. I. Anisimov, Phys. Fluids 29,2067 (1986). 

Figure 60.8 5. J .  H. Gardner, S.  E. Rodner, and J. P. Dahlburg. Phys. Fluids B 3, 1070 
Plot of th-malized growth rate d?/kR versus the normalized wave (1991). 
number J~v ,?  / g  , for the incompressible model (+). Eq. (23) with P= 3 (El), 

and Eq. (23) with P = 4 (0). The equilibrium parameters are Lg = 0.5 pm, 6. K. 0. Mikaelian, Phys. Rev. A46,  6621 (1992) 
g = 10'6 c d s 2 ,  V, = 105 cmls, and A = 0.95. 

7. H. J. Kull, Phys. Fluids B 1. 170 (1989). 

8. A. B. Bud'ko and M. A. Liberman, Phys. Rev. Lett. 68, 178 (1992). 

9. C. P. Verdon, R. L. McCrory, R. L. Morse, G. R. Baker, D. I. Meiron. 
and S. A. Orszag, Phys. Fluids 25, 1653 (1982). 

LLE Review, Volume 60 




