Effect of Electron Collisions on Ion-Acoustic Waves and Heat Flow

Introduction

The damping rate of ion-acoustic waves in plasma plays an
important role in establishing the threshold for the onset of
stimulated Brillouin scattering, ion-temperature-gradient in-
stability, current-driven ion-acoustic instability, and other
drift-wave microinstabilities. The effect of electron-ion (e-i)
collisions on the ion-acoustic damping rate has been recently
investigated by analytically solving the electron Fokker-
Planck (FP) equation for a Lorentz plasma (i.e., neglecting
e-e collisions) with cold ions and arbitrary kA4,; (where k is
the wave number and A,; is the e-i mean free path).! It was
shown that, as e-i collisions are introduced, the damping rate
yrises monotonically above the collisionless Landau limit ,,
reaches a peak at k4,; ~ (Zm, /m,-)l/2 (where Z is the charge
number and m is the mass), and then decreases to zero as kA,;
— 0 with the damping rate ¥4 predicted by fluid theory.

The main purpose of this article is to assess the contribu-
tions from both e-e and e-i collisions on the damping of the
ion-acoustic waves. Results are based on numerical simula-
tions using a code (SPRING) that solves the linearized
electron FP and cold-ion fluid equations. We are able to
explore a wide range of values of kA,; and Z by expanding the
electron-distribution function in an arbitrary number of
Legendre modes, and by using the exact form of the Rosen-
bluth? potentials (neglecting terms of the order of m,/m;). In
the high-Z limit. where e-e collisions can be ignored, the
analytic Lorentz-plasma results of Epperlein et al.! are recov-
ered. For low-Z plasmas, e¢-e collisions become significant
and promote a reduction in the damping near kA,; = 1. though
ystill remains larger than y; and ¥y,;4. The approximation of
isotropic Rosenbluth potentials is also investigated and found
to yield sufficiently accurate values of y (error <10%). A
further useful approximation that involves adjusting the e-i
collision frequency to simulate the strength of e-e collisions
is shown to be similarly accurate. Although finite ion-temp-
erature effects have been neglected in the current analysis,
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their contribution to yhas been investigated by Randall? and
more recently by Tracy et al.,* who calculated the ion-acoustic
eigenfrequency o for arbitrary kA;; (where 4, is the i-i mean
free path) and isothermal electrons.

Itisalso of interest to calculate the effective (or generalized)
thermal conductivity k based on the perturbed distribution
function and compare it to the classical Spitzer-Harm (SH)?
conductivity k5. Not only does this give insight into electron
Kinetic effects, but it can also provide a way of incorporating
kinetic effects into fluid equations. This idea has been success-
fully used in the context of electron heat transport in
laser-produced plasmas® and more recently in the context of
drift-wave microinstabilities in tokamak plasmas.”-® In par-
ticular, generalized thermal conductivities have been calcu-
lated by Hammett and Perkins’ (xp) for collisionless plas-
mas, and by Chang and Callen8 for arbitrary k4,;, @, and Z.

The results for x calculated here are shown to reproduce the
analytic results of Epperlein et al.! obtained in the Lorentz
plasma approximation. In the collisional limit (kA,; << 1) &
approaches Kgpy, and in the collisionless limit (kA,; >> 1) it
approaches kyp. We find, however, significant discrepancies
with the results of Chang and Callen. They underestimate x
by factors ranging from 2.4 (at Z=1)to 7.1 (as Z — =) in the
collisional limit.

The introduction of a spatially modulated inverse-
bremsstrahlung heating source has also been recently shown
to significantly reduce the effectiveness of heat conduction
when k4,; >> 1.9 A simple analytic formula for kjp/Kgy as a
function of kA,; has been proposed, based on simulations
with an approximate form of the FP equation. Here we are
able to assess the accuracy of the xjg formula and show that
the reduction in conductivity (relative xgy) for kA,; >> 1 is
indeed larger than for the undriven case, with freely propagat-
ing sound waves.
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In the following sections, we describe the electron FP and
cold-ion fluid equations and the numerical scheme (SPRING
code) adopted for their solution; finally, our results are pre-
sented and summarized.

Electron Fokker-Planck and Cold-Ion Fluid Equations

Our model consists of a quasi-neutral homogeneous back-
ground plasma with fully ionized ions. The full electron FP
operator is used, with the exception of e-i energy-exchange
terms (which provide contributions of the order of
m,/m; << 1). Adopting a perturbation of the electron distribu-
tion function of the form

L
flxv,t)= Fo(v)+[§0fz(vv 1) P{u)exp(ikx), (1)

where y=v, /v and F(u) is the /th Legendre mode. the
linearized electron FP equation (defined in the rest frame of the
ions) becomes!©
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for /> 2. The ion velocity u; and electric field £ are first order
in the perturbation, and

Fy(v)=N, (2m7,2)_3/2 exp(—vz/Qv,z)

is an equilibrium Maxwellian, where Ne is the background
electron number density, v, = (T /m, ) is the electron ther-
mal velocity, and T, is the electron temperature (in energy
units). The velocity-dependent e-i collision frequency is
given by

Vi) = 42N, 2(e*/m,) In AJo3,

where e is the electron charge and InA is the Coulomb loga-
rithm (assumed the same for both electrons and ions). The
terms C., and CY (defined in the Appendix) represent the
isotropic and anisotropic parts of the e-e collision operator,
respectively. Since the latter involves integration over the
perturbed distribution function, it is usually neglected in FP
calculations.!! The validity of such approximation is the
subject of “Approximations to the Fokker-Planck Equation”
onp.72.

The linearized cold-ion continuity and momentum equa-

tions are
% +ikNa; =0, (6)
and
o
Nimij:ZNi‘e‘E_FRie’ (7)
where R;, = (4mm, /3)[dvvv,,; fis the i-e momentum ex-

change rate, n; is the perturbed ion number density, and N;
is its background value. The perturbed electric field is calcu-
lated via Poisson’s equation,

ikE = 4rle|(Zn; - n,), ®)

where the perturbed electron number density is
n, =4n ] v fodo.
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Numerical Scheme (SPRING code)

A computer code (SPRING) has been written to solve
Egs. (2)—(8). It uses a “time-splitting” scheme with the follow-
ing stages:

llE  ou; ) OF, :
7 m + EJE (acceleration),
% = lk% v % (compression),
% = %ikuiv (;vﬁ (viscosity),

% = Cée(Fo-fO)'*'Cti'e(fo’Fb)

(e-e collision),

Lo - i (o )+ CEul o)
and

l l+1 o I(l+1
% 9 _ l fll l f1+l ( ) etfl

(advection and e-i angular scattering),

where ! > 0. The acceleration, compression, and viscosity
stages are advanced explicitly in time. In the e-e collision
stage, the isotropic collision operators (which are differential
operators) are evaluated implicitly using the Chang-Cooper!2
scheme, whereas the anisotropic operators (which are integral
operators) are evaluated explicitly. In the advection-scattering
stage, f; is solved implicitly at each velocity group. using
the boundary condition that f_; = f;,; = 0. The distribution
function is defined on a velocity mesh with constant spacing of
typically Av =0.125v, between v =0 and 6v,.

After advancing the distribution function in time, with a
fixed time step At, the ion-fluid equations are solved explicitly.
However, solving Poisson’s equation explicitly to calculate £
can lead to numerlcal instabilities when Atw, >1 [where

(471'N e?/m, ) e is the plasma frequency]. To avoid this
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problem we use an implicit-moment method, !3 which involves
taking density and momentum moments of the FP equation
and substituting back into the ion continuity and Poisson’s
equations. An approximation to the electric field at a time
(t + At ) can then be obtained from

ikE(t + Ar)

4rlel

= ——————1Zn;(t) —n,(1) + kAN,
(1+w,2,Atz){ ' ) ‘

[0, (6) + KAIP(8) N m—AtR;, (1) Ny, |} (9)

where p=(4mm,/3)[dvv*fy and v, =(47/3N,)| dvv’ f, .
Since we are interested in low-frequency phenomena, such
as sound waves, Eq. (9) allows us to use time steps larger
than @,™".

The sound-wave eigenfrequencies are determined by ap-
propriately initializing the dependent variables and monitoring
their temporal evolution over several wave periods. In the past,
simulations of this kind (involving the ion FP equation) have
suffered from the occurrence of spurious transients that re-
quired complicated procedures to filter out the correct
eigenfrequencies.? This problem appears to be associated with
the fact that the “exact” perturbed eigenfunctions f; are not
known a priori. Rather than trying to guess f;. a more satisfac-
tory approach is to start with fy=rn;=0and u; = 1. The variables
then typically converge to the appropriate eigenmodes within
a few sound-wave periods. (An alternative approach based on
eigenvalue analysis has also been proposed by Tracy er al.%)

SPRING Simulation Results
The code SPRING provides ion-acoustic damping rates
Ylkc, for difterent values of kA,;, kAp, Z, and A, where

hei =372/ [4(2;:)” N, Ze*InA],

Ap =v;/®, is the Debye length, A is the atomic mass, and
ey =(ZT,/m;) /2 is the isothermal sound speed. The code also
calculates an effective thermal conductivity defined by
K = —qgp /ikTgp ., Wwhere

gpp =(27m,/3) [ dv V3 f;
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is the electron heat flow and
Typ = (4mm, /N, )fdv(zr4/3 ~-vp,2 )fo

is the temperature. Since we are primarily concerned with
collisional effects, we choose Ap, << k~!; also, for simplicity,
we take A =2Z.

1. Damping rate y

The first test of SPRING involves neglecting e-e collisions
altogether. This is equivalent to using the Lorentz plasma
approximation, or high-Z limit, since V,;/V,, ~ Z. In this
instance Egs. (2)—(8) can be solved analytically by the method
of continued fractions (see Ref. 1), and the results are plotted
as curve d in Fig. 58.11. The code is found to reproduce these
damping rates very accurately throughout the whole range of
kA,;. (In practice, this requires using Z >> 10%)

100

T T 1TT1T

< 1 -
< 107 ]
r ]
L 4
- 1
L d \ C 1
L W\ 4

\\¢

10-2 N N W

104 10~2 100 102 104
S )Bk)*ei
Figure 58.11

Plots of the damping rate of ion-acoustic waves y/kc, as functions of fkA,;,
where cy is the isothermal sound speed, k is the perturbation wave number, Ao;
is the electron-ion mean free path, and f is a scaling factor (8 = 0.24, 0.68,
0.92, and 1 for Z= 1, 8, 64, and o, respectively). Solid curves represent
SPRING simulations with (a) Z=1, (b) Z=8, (c) Z=64, and (d) Z = oo. The
dashed curve refers to the fluid result.

To test the accuracy of the numerical implementation of the
e-e operators we first consider the collisional case (kA,; << 1)
with Z= 1. In this limit the Legendre expansion [Eq. (1)] can
be truncated at [ = 1, and f, approaches a perturbed Maxwell-
ian. Since this is also the fluid limit, a sound-wave dispersion
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relation can be derived using the standard fluid equations
(neglecting viscosity etfects) with the Spitzer-Hdrm thermal
conductivity gy =¥o(Z)N,v,A,;, where the Z-dependent,
thermal-conductivity coefficient is approximately given by
¥o(Z) =3.20(0.24+ Z2)/(1+0.24Z) and () =128/37.
The resultant dispersion relation (using d/dt = —i@) is found
to be

\2 5
[kij = 41, (10)
R P i(ﬂjsr

Cs

where ris the ratio of the thermal diffusion rate (ZkZKSH /3Ne)
to the sound transit rate (kc,) across k~!. Since
r=2ygkAy (m; /Zme)1 /2/3, it has been found convenient to
plot ke, as a function of BkA,;, where

B=(4/22)""?74(2)/7(=)

is a scaling factor of order unity. The damping rates based on
Eq. (10) are plotted in Fig. 58.11 (dashed curve). SPRING
simulation results are found to be in good agreement with these
as kA,; = 0.

Let us now consider the more interesting case of finite Zand
kA,; . The results are shown in Fig. 58.11 (solid curves a—c) for
Z=1, 8, and 64. Starting from the large k4,; limit, we note that
the dominant collisional contribution comes from e-i colli-
sions. [Here, a large number of Legendre modes are neccssary
to accurately model the damping (e.g., typically L = 20 for
BkA,; =10%).] In the intermediate regime of fkA,; ~1 we
find the peculiar result that e-e collisions actually reduce the
damping rate. The reason for this becomes apparent if we
consider the nature of the electron collisional process. As
shown by Epperlein et al.! elastic scattering between electrons
and ions gives rise to both sound-wave damping, through
thermal diffusion, and sound-wave “undamping,” through
disruption of the Landau wave-particle interaction. However,
the main collisional contribution between electrons is energy
exchange, which acts to drive f;; toward a perturbed Maxwell-
ian. Hence, introducing e-e collisions can actually reduce the
damping rate by bringing it closer to the fluid limit. Since
Vi [Veo ~ Z, this effect is strongest for low-Z plasmas. (Al-
though v does not fall below ¥ for BkA,; >0.01, if we
artificially reduce the value of Z, we can effectively extend the
“fluid limit” to larger values of kA,; and thereby allow yto be
less than ¥;.)

71



Errect oF ELECTRON COLLISIONS

To a lesser extent, e-e collisions also affect the anisotropic
parts of the electron distribution function (i.e.. fi, fa, ...). For
example, the e-e collision terms on the RHS of Eq. (3) are
responsible for reducing the thermal conductivity, thus giving
rise to the Z-dependent thermal coefficient ¥, in the fluid limit.

2. Approximations to the Fokker-Planck equation

The e-e collision operator for [ > O (see Appendix) can be
separated into an isotropic part Cée(FO_f,), which involves
derivative operations on f}, and an anisotropic part Ce“e( R f ) ,
which involves integral operations on f;. Since the latter is
more difficultto implement numerically, it is usually neglected
in clectron FP calculations. Here we investigate the implica-
tions of neglecting both C4,(Fy f;) and Ci,(Ff;) for!>0and
how we can simulate their effects by appropriately adjusting
the value of v,;. We also briefly explore the possibility of using
a generalized collision frequency to simulate the contribution
from an infinite Legendre-mode expansion.

The effect of neglecting ¢-e collisions altogether (the so-
called Lorentz approximation) has already been demonstrated
in Fig. 58.11. There we see that apart from the weakly colli-
sional regime fkA,; >>1, where electron collisions play a
relatively minor role in the sound-wave damping, or the
strongly collisional regime (Bk4,; << 107). where the ther-
mal diffusion ratc is much less than sound transit rate, it is not
reasonable to neglect e-e collisions for Z < 64. This is espe-
cially true near the maximum value of yke,, at pkA,; = 0.002,
where even for Z = 64 the Lorentz approximation leads to
large errors.

The first approximation we consider uses 1sotropic
Rosenbluth potentials only (i.c..setting CZ%, = 0). Figure 58.12
shows a comparison of the damping rate (open circles) with
the more accurate calculation discussed in the previous
section. We note that the largest errors occur over the range
107! < kA, <10' with an overall maximum of about
10%. Since the relative contribution from e-e collisions is
most significant for low Z, the worst possible case occurs
withZ=1.

The second approximation neglects e-e collisions alto-
gether for /> 0 (i.e., setting Cl, = C% =0 for I>0). To offset
this more drastic approximation we introduce a modified
collision frequency vJ; =[yo(=)/7¢(Z)]v.;. The new factor
[70(=2)/70(Z)] = (Z + 4.2)/(Z + 0.24) has the cffect of giving
the correct (SH) thermal conductivity in the collisional limit.
A plot of the corresponding damping rate for Z= 1 (the crosses
in Fig. 58.12) shows that, ouce again, the errors arc larger at
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intermediate values of BkA,; with a maximum of about 10%.
As in the previous case, this low-Z example provides the worst
possible case.

The advantage of neglecting e-¢ collisions for />0 (through
the introduction of v;-) is that Egs. (3)—(5) become algebraic
in v, allowing for much faster numerical solution of the
coupled equations.

100

Figure 58.12

Plots of the damping rate of ton-acoustic waves y/kc, as functions of SkA,;
for Z=1 (as in Fig. 58.11). Results using isotropic Rosenbluth potentials are
displayed as open circles, whereas those using v.; are displayed as crosses.

Provided we are only interested in low-frequency waves
[such that @ << v,;(v; )1, we can now go a step further and use
the techniques of Ref. 1 to reduce Egs. (3)—(5) to a single
equation,

lkﬂfo-l:%"'—&z*"'(v —ve,»)u[]—aT?z-v fl (11)

e

Here, v (k)=vi |1+ (nkv/6vzi)2 v is the low-frequency-
generalized collision frequency proposed by Epperlein et al.,!
which incorporates the contribution from all Legendre modes
with /> 1. By substituting Eq. (11) into Eq. (2), we are left with
a single differential equation for f, which is easier to solve
than the original set of coupled equations. However, a discus-
sion of the numerical methods involved is outside the scope of
this article.
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3. Effective thermal conductivity K

Figure 58.13 plots (a) [«/xsy| and (b) arg(k) as functions
of BkA,; for Z=1, 8, 64, and = (solid curves). The dashed
curve shows the results of Hammett and Perkins (for a
collisionless plasma).

When neglecting e-¢ collisions (Lorentz plasma approxi-
mation), our results agree with the analytic solutions of Ref. 1.
In the collisional limit {kA,; << 1), we have k= kgy, whereas
in the collisionless limit (kA,;>>1), we have
K =Kkyp =3(2/7)!? N,v, /lk| [see dashed curve HP in
Fig. 58.13(a)]. (The formula for xyp is 1.5 times larger than
the one used by Hammett and Perkins since ours is defined in
terms of the isotropic temperature Tgp.) Comparing our results
with those of Chang and Callen,® however, we find consider-
able discrepancy in the kA,; << 1 limit. Although the authors
point out in their paper that they underestimate the thermal
conductivity by a factor of 2.4 for Z = 1, this factor actually
rises up to 7.1 for Z>> 1.

Two mechanisms can be identified that reduce the heat
flow below the SH limit, ggy. The first one is caused by a
departure of f;, from the perturbed Maxwellian.!* When the
mean free path of heat-carrying electrons (with velocities close
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to 3.6 v,) becomes greater than k!, their spatial gradient in
configuration space is reduced. Since these relatively
collisionless electrons cannot thermalize instantaneously with
thermal electron population (as required by fluid theory), the
heat flow is reduced below ggy. The reduction in heat flow is
therefore governed by the balance between the thermal-diffu-
sion rate and the e-e thermalization rate [as given by the
collision term in Eq. (2)]. In the Lorentz plasma approxima-
tion, where ¢-¢ collisions are neglected altogether, there is no
effective coupling between different electron-energy groups,
as illustrated by the large phase shift between ggp and Tgp in
Fig. 58.13(b). As seen in Figs. 58.13(a) and 58.13(b), the
departure from fluid theory then becomes significant when
r~ k)%,,-(m,-/Zme)”2 > 1,i.e., when the thermal-diffusion time
becomes less than the hydrodynamic time. As e-e collisions
are introduced (identified by the finite-Z curves), f; is driven
closer to a perturbed Maxwellian and the onset of kinetic
effects is shifted to larger values of kA,;. The phase difference
between gpp and Tgp is also considerably reduced by the
introduction of e-e collisions and becomes negligible for
Z =1 [see Fig. 58.13(b)].

Regardless of the e-e thermalization strength, the electron
heat flow cannot exceed the “free-streaming,” or collision-

arg(K)(°)

10~ 10-2 100 102 104
BkA,

i
P1227

Plots of (a) ,K‘/K’SH| and (b) arg(x) as functions of BkA,;, where ik and ksy are the effective and Spitzer-Hirm thermal conductivities, respectively. As in
Fig. 58.11, the solid curves refer to SPRING simulation results with (a) Z= 1, (b) Z=8, (c) Z =64, and (d) Z = [for Z= 1, arg(k) <<1]. Here the dashed

curve refers to the model of Hammett and Perkins.
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less, limit as calculated by Hammett and Perkins,’ i.e.,
gup = —(ik/ k) 3(2/7)"'2 N, Tgpo,. This gives us the second
mechanism for the reduction of x, with the upper limit shown
by the plot of Kyp /sy =9(27)''% (4/22)"? [(1286kA,;)
(dashed curve) in Fig. 58.13(a).

Other processes can also affect the electron thermal conduc-
tivity. Inverse-bremsstrahlung heating, for example,
preferentially heats low-velocity electrons, which in turn
modifies f; and leads to even further reduction of k. Such a
phenomenon has been recently investigated and shown to have
a significant impact on both filamentation® and stimulated
Brillouin scattering!? in laser-produced plasmas. The corre-
sponding values of x have been calculated using the
nonlinear FP code SPARK the following analytical fit to the
simulation results has been proposed:”

KB _ 1

(12)
KsH  1+(30kA,

)4/3’

where 4, = nT2/ 47N,e*Z" 2 In A| is the electron delocal-
ization length and 7 :[}'O(Z)/}/O(oo)]]/z. (As observed in
Ref. 9, certain care is needed in defining Z for multispecies
ions.) The resulting dashed curve (IB) for Z = | is plotted in
Fig. 58.14 as a function of SkA,;. Although the original
simulation results were based on a two-Legendre-mode expan-
sion for the distribution function (i.e., L = 1), the contribution
from higher-order modes have been investigated by Epperlein
and Short® [using a generalized collision frequency v* of the
type discussed in “Approximations to the Fokker-Planck
equation”] and found to be negligible.

Here, we are able to check on the accuracy of Eq. (12) by
using SPRING with an inverse-bremsstrahlung heating source

of the typel®
12
v d

inserted on the right-hand side of Eq. (2), where

< |on
Y&

g=[1+(Vei/a’0)2]_l

and ay) is the light-wave frequency. The code is then run until
the distribution function reaches a steady state. In this case,
ion motion does not play a significant role. The corresponding
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values of K/ kg (also for Z= 1) have been calculated for range
of bkA,; and displayed as circles in Fig. 58.14. As shown, the
simple analytic fit [Eq. (12)] can accurately reproduce the
more accurate SPRING simulation results. For comparison,
the values of x for an undriven plasma [curve Z = 1 in
Fig. 58.13(a)] has also been plotted in Fig. 58.14.
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Figure 58.14

Plot of x/xsH as a function of fkA,; for Z=1 (as in Fig, 58.13). Here the
dashed curve refers to the analytic formula for xyg (from Ref. 9), and circles
represent SPRING simulation tesults with an inverse-bremsstrahlung
heating source.

Summary

The effect of electron collisionality on the damping of ion-
acoustic waves has been investigated by numerically solving
the electron FP and cold-ion-fluid equations. The code
(SPRING) developed for this purpose reproduces the analytic
results previously obtained for a Lorentz plasma (i.e., without
e-e collisions).

The introduction of e-¢ collisions shows that the Lorentz
approximation is inadequate near the peak of the damping rate
at ki, ~ (Zm, /m;)"'? . For ki,; >(Zm,/m;)''* and Z < 64,
e-e collisions reduce the damping rate below the Lorentz
value, though it still remains higher than the 7,4 and % .

A convenient approximation that involves adjusting the
e-i collision frequency to model the contribution from e-e¢
collisions for / > 1 has been found to yield errors of up to 10%
inthe damping rate. A further generalization of the ¢-i collision
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frequency that simulates the contribution from all Legendre
modes with [ > 1 has also been discussed.

Calculations of the effective thermal conductivity x for a
Lorentz plasma have shown significant reduction from the
Spitzer-Harm value gy for kA4,; > 1074, However, even for
Z as high as 64, e-e collisions extend the validity of the fluid
approximation for up to kA, ~1072. In the limit as
kA,; — o=, K approaches the value 3(2/7[)”2 N,v, [k pre-
dicted by Hammett and Perkins.

Heating the plasma with a spatially modulated inverse-
bremsstrahlung heating source, and solving for the steady-state
distribution function, has been shown to further reduce x. The
accuracy of a simple analytic formula previously derived for
K has been verified for up to kA,; ~ 102
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APPENDIX: THE ELECTRON-ELECTRON COLLI-
SION OPERATOR

The isotropic and anisotropic parts of the collision operator
are given by>10

Cﬁe(fo’.ﬁ)z Vee 0~,U|:fl1() +§%(’8+J91):‘

and

C([}e(fo’ﬁ)

+1
=V, 403 f fy + ) f,(—318 +19 - 2191)

v P [U+2)(+1) |
o) @t | 21+3 (o220

et

20 -1
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L0 Wy (i), (Bolmd)
22 +1) @r+3) 2 (@43 T
(z2+3/—2)+ i(i-1)
@i-1) -1
where

4r anw2+mdw

nt

4z ¢
I,’:, = —’n‘J_fn¥V2+de, J,r,ll =
v v

and v,,(v) 471:N( 2/m, ) InA/v3 is the velocity-depen-
dent e-e collision frequency. Here we note that

Co(fo-fo) = C&% (fo- fo)-
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