
Effect of Electron Collisions on Ion-Acoustic Waves and Heat Flow 

Introduction 
The damping rate of ion-acoustic waves in plasma plays an 
important role in establishing the threshold for the onset of 
stimulated Brillouin scattering, ion-temperature-gradient in- 
stability, current-driven ion-acoustic instability, and other 
drift-wave microinstabilities. The effect of electron-ion (e- i)  

collisions on the ion-acoustic damping rate has been recently 
investigated by analytically solving the electron Fokker- 
Planck (FP) equation for a Lorentz plasma (i.e., neglecting 
e-e collisions) with cold ions and arbitrary kdei (where k is 
the wave number and lei is the e-i mean free path).' It was 
shown that, as e-i collisions are introduced, the damping rate 
yrises monotonically above the collisionless Landau limit y ~ ,  

112 
reaches a peak at kdei - (2rne/mi) (where Z is the charge 
number and rn is the mass), and then decreases to zero as kdei 
+ 0 with the damping rate yfluid predicted by fluid theory. 

The main purpose of this article is to assess the contribu- 
tions from both e-e and e-i collisions on the damping of the 
ion-acoustic waves. Results are based on numerical simula- 
tions using a code (SPRING) that solves the linearized 
electron FP and cold-ion fluid equations. We are able to 
explore a wide range of values of kdei and Z by expanding the 
electron-distribution function in an arbitrary number of 
Legendre modes, and by using the exact form of the Rosen- 
bluth' potentials (neglecting terms of the order of metmi). In 
the high-Z limit. where e-e collisions can be ignored, the 
analytic Lorentz-plasma results of Epperlein et al. are recov- 
ered. For low-Z plasmas, e-e collisions become significant 
and promote a reduction in the damping near kdei = 1 .  though 
ystill remains larger than yL and yfluid The approximation of 
isotropic Rosenbluth potentials is also investigated and found 
to yield sufficiently accurate values of y (error <lo%). A 
further useful approximation that involves adjusting the e-i 
collision frequency to simulate the strength of e-e col.lisions 
is shown to be similarly accurate. Although finite ion-temp- 
erature effects have been neglected in the current analysis, 

their contribution to y has been investigated by  anda all^ and 
more recently by Tracy et who calculated the ion-acoustic 
eigenfrequency m for arbitrary kdii (where dii is the i-i mean 
free path) and isothermal electrons. 

It is also of interest to calculate the effective (or generalized) 
thermal conductivity K based on the perturbed distribution 
function and compare it to the classical Spitzer-HLm ( s H ) ~  
conductivity KSH. Not only does this give insight into electron 
kinetic effects, but it can also provide a way of incorporating 
kinetic effects into fluid equations. This idea has been success- 
fully used in the context of electron heat transport in 
laser-produced plasmas6 and more recently in the context of 
drift-wave microinstabilities in tokamak plasn~as.7~8 In par- 
ticular, generalized thermal conductivities have been calcu- 
lated by Hammett and perkins' (KH~)  for col l i~ionles~ plas- 
mas, and by Chang and callens for arbitrary kd,;, m, and Z. 

The results for  calculated here are shown to reproduce the 
analytic results of Epperlein et al. obtained in the Lorentz 
plasma approximation. In the collisional limit (kdei << 1) K 

approaches KSH, and in the collisionless limit (kd,; >> 1) it 
approaches K H ~ .  We find, however, significant discrepancies 
with the results of Chang and Callen. They underestimate K 

by factors ranging from 2.4 (at Z =  1) to 7.1 (as Z + m) in the 
collisional limit. 

The introduction of a spatially modulated inverse- 
bremsstrahlung heating source has also been recently shown 
to significantly reduce the effectiveness of heat conduction 
when kdCi >> l.9 A simple analytic formula for K I ~ / K S H  as a 
function of kdei has been proposed. based on simulations 
with an approximate form of the FP equation. Here we are 
able to assess the accuracy of the q~ formula and show that 
the reduction in conductivity (relative K ~ H )  for kde, >> I is 
indeed larger than for the undriven case, with freely propagat- 
ing sound waves. 
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In the following sections. we describe the electron FP and for 1 > 2. The ion velocity ui and electric field E are first order 
cold-ion fluid equations and the numerical scheme (SPRING in the perturbation, and 
code) adopted for thcir solution; finally, our results are pre- 
sented and summarized. 2 -312 

Fo ( v )  = N , ( z ~ I ,  ) exp(-u'/2ut2) 

Electron Fokker-Planck and Cold-Ion Fluid Equations 
Our model consists of a quasi-neutral homogeneous back- is an equilibrium Maxwellian, where Ne is the background 

112 . ground plasma with fully ionized ions. The full electron FP electron number density. v ,  = (T, / m e )  is the electron ther- 
operator is used, with the exception of e-i energy-exchange mal velocity, and T, is the electron temperature (in energy 
terms (which provide contributions of the order of units). The velocity-dependent e-i collision frequency is 
m,lmi << 1). Adopting a perturbation of the electron distribu- given by 
tion function of the form 

1=0 where e is the electron charge and InA is the Coulomb loga- 
rithm (assumed the same for both electrons and ions). The 

where ,LJ = v,/v and q(p) is the lth Legendre mode, the terms c:, and C& (defined in the Appendix) represent the 
linearized electron FP cquation (defined in the rest frame of the isotropic and anisotropic parts of the e-e collision operator, 
ions) becomes10 respectively. Since the latter involves integration over the 

perturbed distribution function. it is usually neglected in FP 

$0 ikv iku, ca~cu la t ions .~~  The validity of such approximation is the 
-+i"-iux- 
dt dFo - cie(6.fn) + ' ;e(fo3 '0 (2) subject of "Approximations to the Fokker-Planck Equation" 

on p. 72. 

and 

The linearized cold-ion continuity and momentum equa- 
$1 2 - + lkzlfo + ikv - fi - tions are 
dt 5 

and 

= -3vCif2 + cLp(~i.f2) + c : , ( ~ ) , f 2 ) ,  (4) where Rir = (4mn, /3)~dvv3vei f i  is the i-e momentum ex- 
change rate, rii is the perturbed ion number density, and Ni 
is its background value. The perturbed electric field is calcu- 
lated via Poisson's equation, 

where the perturbed electron number density is 
- - 

1(1+ 1) -- 
2 

+ C ~ , ( F ~ ,  h )  + ~ f ~ ( f i ~ , f i )  ( 5 )  "e = 4~Jowv2.f0du. 
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Numerical Scheme (SPRING code) problem we use an implicit-moment method, l 3  which involves 
A computer code (SPRING) has been written to solve taking density and momentum moments of the FP equation 

Eqs. (2)-(8). It uses a "time-splitting" scheme with the follow- and substituting back into the ion continuity and Poisson's 
ing stages: equations. An approximation to the electric field at a time 

( t  + At ) can then be obtained from 

(acceleration), 
ikE(t + At) 

(compression), 

(viscosity), 

- - 411 Ie '  {Ztzi (f) - ,I<, (t) + ikAtNe 
(1 + o;;~t') 

where p = (4mn,/3) dvv4 fo and ZJ, = (4n/3Ne)I dzJzJ3fi . - . - 
Since we are interested in low-frequency phenomena, such 

af,- i 
- - ct7, (FO .fo ) + tie (.fo, Fo ) as sound waves, Eq. (9) allows us to use time steps larger 
at than wJF1. 

(e-e collision), 

& -  i 
-- ~ e e ( ~ o > h ) +  c & ( F o , ~ )  at 

and 

(advection and e-i angular scattering). 

where 1 > 0. The acceleration, compression. and viscosity 
stages are advanced explicitly in time. In the e-e collision 
stage, the isotropic collision operators (which are differential 
operators) are evaluated implicitly using the chang-cooper12 
scheme, whereas the anisotropic operators (which are integral 
operators) are evaluated explicitly. In the advection-scattering 
stage, .fi is solved implicitly at each velocity group. using 
the boundary condition that fPl = fL+l = 0 .  The distribution 
function is defined on avelocity mesh with constant spacing of 
typically Av = 0.125 v, between v = 0 and 6v,. 

After advancing the distribution function in time, with a 
fixed time step At, the ion-fluid equations are solved explicitly. 
However, solving Poisson's equation explicitly to calculate E 
can lead to numerical instabilities when Atwp > 1 [where 

1 1 2 .  
up = (411Nee2 /me) 1s the plasma frequency]. To avoid this 

The sound-wave eigenfrequencies are determined by ap- 
propriately initializing the dependent variables and monitoring 
their temporal evolution over several wave periods. In the past, 
simulations of this kind (involving the ion FP equation) have 
suffered from the occurrence of spurious transients that re- 
quired complicated procedures to filter out the correct 
eigenfrequencies.3 This problem appears to be associated with 
the fact that the "exact" perturbed eigenfunctions fi are not 
known a prior;. Rather than trying to guess,fi, a more satisfac- 
tory approach is to start withfi = ni = 0 and ui = 1. The variables 
then typically converge to the appropriate eigenmodes within 
a few sound-wave periods. (An alternative approach based on 
eigenvalue analysis has also been proposed by Tracy et ~ 1 . ~ )  

SPRING Simulation Results 
The code SPRING provides ion-acoustic damping rates 

ylkc, for different values of kAei, kAD, Z, and A, where 

AD = vt/wp is the Debye length, A is the atomic mass, and 
112. 

c, = (ZT, /mi) is the isothermal sound speed. The code also 
calculates an effective thermal conductivity defined by 
K = -qFP/ikTFP. where 
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is the electron heat flow and relation can be derived using the standard fluid equations 
(neglecting viscosity effects) with the Spitzer-Harm thermal 

TFp = (4m,/ive)/du(u4/3- u2ur2),fo conductivity KSH = yO(Z)Neurdei, where the Z-dependent, 
thermal-conductivity coefficient is approximately given by 

is the temperature. Since we are primarily concerned with yO(Z) = 3.20(0.24 + Z)/(l+ 0.242) and yo(") = 1 2 8 1 3 ~  . 
collisional effects, we choose AD << k-I ; also, for simplicity, The resultant dispersion relation (using dl& = - iw)  is found 
we take A = 22. to be 

1. Damping rate y 2 
The first test of SPRING involves neglecting e-e collisions (10) 

altogether. This is equivalent to using the Lorentz plasma 3 + i  - 3r 
approximation, or high-Z limit, since v,,/v,, - 2 .  In this 
instancc Eqs. (2)-(8) can be solved analytically by the method 

[:<I + I '  

of continued fractions (see Ref. 1). and the results are plotted where ris  the ratioof the thermal diffusion rate ( 2 k 2 ~ s H  / 3 ~ , )  
as curved in Fig. 58.11. The code is found to reproduce these to  the sound transit rate (kc,) across k-I. Since 
damping rates very accurately throughout the whole rangc of I. = 2yoklei (mi / ~ r n , ) l ' ~ / 3 ,  it has been found convenient to 
kAe,. (In practice, this requires using Z >> lo4.) plot ylkc, as a function of pkdei, where 

Figure 58.1 1 

Plots of the damping rate of ion-acoustic waves ylkc, as functions of pk/ZPi, 

where c, is theisothermal sound speed, kis the perturbation wave number, Lei 
is the electron-ion mean free path, and P i s  a scaling faclor ( P  = 0.24. 0.68, 

0.92. and I for Z = 1, 8, 64, and m, respectively). Solid curves represent 

SPRING simulations with (a) Z =I, (b) Z = 8, (c) Z = 64, and (d) Z = m. The 

dashed curve refers to the fluid rcsult. 

To test the accuracy of the numerical implementation of the 
e-e operators we first consider the collisional case (kd,; << 1) 
with Z =  1. In this limit the Legendre expansion [Eq. (I)]  can 
be truncated at 1 = I ,  and~fo approaches a perturbed Maxwell- 
ian. Since this is also the fluid limit, a sound-wave dispersion 

is a scaling factor of order unity. The damping rates based on 
Eq. (10) are plotted in Fig. 58.11 (dashed curve). SPRING 
simulation results are found to be in good agreement with these 
as kdei + 0. 

Let us now consider the more interesting case of finite Zand 
kd,, . The rcsults are shown in Fig. 58.11 (solid curves a-c) for 
Z =  1.8, and 64. Starting from the large kd,, limit. we note that 
the dominant collisional contribution comes from e-i colli- 
sions. [Here, a large number of Legendre modes are neccssary 
to accurately model the damping (e.g., typically L = 20 for 
pkdei = lo2).] In the intermediate regime of pkd,, - 1 we 
find the peculiar result that e-e collisions actually reduce the 
damping rate. The reason for this becomcs apparent if we 
consider the nature of the electron collisional process. As 
shown by Epperlein et 01. ' elastic scattering between electrons 
and ions gives rise to both sound-wave damping, through 
thermal diffusion, and sound-wave "undamping," through 
disruption of the Landau wave-particle interaction. However, 
the main collisional contribution between electrons is energy 
exchange, which acts to drive fo toward a perturbed Maxwell- 
ian. Hence, introducing e-e collisions can actually reduce the 
damping rate by bringing it closer to the fluid limit. Since 
v,;/v,, - 2 ,  this effect is strongest for low-Z plasmas. (Al- 
though y does not fall below y~ for Pkd,; > 0.01, if we 
artificially reduce the value of 2, we can effectively extend the 
"fluid limit" to larger values of kd,, and thereby allow yto be 
less than yL.) 
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To a lesser extent, e-e collisions also affect the anisotropic 
parts of the electron distribution function (i.e.. f , ,  f2 ,  ...). For 
example, the e-e collision terms on the RHS of Eq. (3) are 
responsible for reducing the thermal conductivity, thus giving 
rise to the Z-dependent thermal coefficient yo in the fluid limit. 

2. Approximations to the Fokker-Planck equation 
The e-e collision operator for 1 > 0 (see Appendix) can be 

separated into an isotropic part C: , (~~,f i ) ,  which involves 
derivative operations on~fi, and an anisotropic part ~ : , ( ~ ~ f i ) ,  
which involves integral operations on.fi. Since the latter is 
more difficult to implement numerically. it is usually neglected 
in clectron FP calculations. Here we investigate the implica- 
tions of neglecting both C::, ( ~ ~ . f i )  and ~ : , ( ~ ~ , f i )  for I > 0 and 
how we can simulate their effects by appropriately adjusting 
thc value of vei. We also briefly explore the possibility of using 
a generalized collision frequency to simulate the contribution 
from an infinite Legendre-mode expansion. 

The effect of neglecting e-e collisions altogether (the so- 
called Lorcntz approximation) has already been demonstrated 
in Fig. 58.1 1 .  There we see that apart from the weakly colli- 
sional regime pkl,, >> 1, where electron collisions play a 
relatively minor role in the sound-wave damping. or the 
strongly collisional regime (pkl[,; << loJ), where the ther- 
mal diffusion rate is much less than sound transit rate, it is not 
reasonable to neglcct e-e collisions for Z < 64. This is espe- 
cially true near the maximum value of flkc,, at [3kki = 0.002, 
where even for Z = 64 the Lorentz approximation leads to 
large errors. 

The firs1 approximation we consider uses isotropic 
Rosenbluth potentialsonly ( i . ~ . .  setting C& = 0 ) .  Figure 58.12 
shows a comparison of the damping rate (open circles) with 
the more accurate calculation discussed in the previous 
section. We note that the largcst errors occur over the range 
lo-' < pklei < 10' with an overall maximum of about 
10%. Since the relative contribution from e-e collisions is 
most significant for low Z, the worst possible case occurs 
with Z = 1. 

The second approximation neglects e-e collisions alto- 
gether for 1 > 0 (i.e., setting Ci, = C,$ = 0 for 1 > 0). To offset 
this more drastic approximation we introduce a modified 
collision frequency v[:i = [ y o ( ~ ) / y o ( ~ ) ] ~ ~ , i .  The new factor 
[yo (m) /yo(~) ]  = (Z + 4.2)/(Z + 0.24) has thc cffect of giving 
the correct (SH) thermal conductivity in the collisional limit. 
A plot of the corresponding damping rate for Z =  1 (the crosses 
in Fig. 58.12) shows that, once again, the errors arc larger at 

intermediate values of pklei with a maximum of about 10%. 
As in the previous case, this low-Zexarnplc provides the worst 
possible case. 

The advantage of neglecting e-e collisions for 1 > 0 (through 
the introduction of vZi) is that Eqs. (3)-(5) becomc algebraic 
in v, allowing for much faster numerical solution of the 
coupled equations. 

Figure 58.12 

Plots of the damping rate of ion-acoustic waves y lkc,  as functions of Pkk,; 
for Z =  1 (as in Fig. 58.1 1 ) .  Results using isotropic Rosenbluth potentials are 
displayed as open circles, whereas those using v:i are displayed as crosses. 

- 

Provided we are only interested in low-frequency waves 
[such that o << vei (v,)], we can now go a step further and use 
the techniques of Ref. I to reduce Eqs. (3)-(5) to a single 
equation, 

112 

Here. v*(k) = v~,[t + (idiu/6v6) ] is the low-frequency- 
generalized collision frequency proposed by Epperlein et al.,' 

which incorporates the contribution from all Legendre modes 
with I > I .  By substituting Eq. (1 1) into Eq. (21, we are left with 
a single differential equation for.fo, which is easier to solve 
than the original set of coupled equations. However, a discus- 
sion of the numerical methods involved is outside the scope of 
this article. 
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3. Effective thermal conductivity K 

Figure 58.13 plots (a) J K / K ~ ~ (  and (b) arg(K) as functions 
of pkIei for Z = 1, 8, 64, and .o (solid curves). The dashed 
curve shows the results of Hammett and Perkins (for a 
collisionless plasma). 

When neglecting e-e collisions (Lorentz plasma approxi- 
mation), our results agree with the analytic solutions of Ref. 1. 
In the collisional limit (kIei << I), we have K =  KSH, whereas 
in the coll isionless limit ( k I r i > > l ) ,  we have 
K = K H ~  = 3(2/ r ) l l 2  N,v,/(k( [see dashed curve HP in 
Fig. 58.13(a)]. (The formula for KHP i s l . 5  times larger than 
the one used by Hammett and Perkins since ours is defined in 
terms of the isotropic temperature TFP.) Comparing our results 
with those of Chang and  alle en,^ however, we find consider- 
able discrepancy in the kIei << 1 limit. Although the authors 
point out in their paper that they underestimate the thermal 
conductivity by a factor of 2.4 for Z = 1, this factor actually 
rises up to 7.1 for Z >> 1. 

Two mechanisms can be identified that reduce the heat 
flow below the SH limit, q s ~ .  The first one is caused by a 
departure of fo from the perturbed ~ a x w e 1 l i a n . l ~  When the 
mean free path of heat-carrying electrons (with velocities close 

to 3.6 v,) becomes greater than k-I, their spatial gradient in 
configuration space is reduced. Since these relatively 
collisionless electrons cannot thermalize instantaneously with 
thermal electron population (as required by fluid theory), the 
heat flow is reduced below r jsH The reduction in heat flow is 
therefore governed by the balance between the thermal-diffu- 
sion rate and the e-e thermalization rate [as given by the 
collision term in Eq. (2)]. In the Lorentz plasma approxima- 
tion, where e-e collisions are neglected altogether. there is no 
effective coupling between different electron-energy groups, 
as illustrated by the large phase shift between qFp and TFP in 
Fig. 58.13(b). As seen in Figs. 58.1 3(a) and 58.13(b), the 
departure from fluid theory then becomes significant when 
r - k ~ r i ( m i / ~ m e ) 1 1 2  > 1 ,  i.e., when the thermal-diffusion time 
becomes less than the hydrodynamic time. As e-e collisions 
are introduced (identified by the finite-Z curves),fb is driven 
closer to a perturbed Maxwellian and the onset of kinetic 
effects is shifted to larger values of khei. The phase difference 
between qFp and TFP is also considerably reduced by the 
introduction of e-e collisions and becomes negligible for 
Z = 1 [see Fig. 58.13(b)]. 

Regardless of the e-e thermalization strength, the electron 
heat flow cannot exceed the "free-streaming," or collision- 

Figure 58.13 
Plots of (a) / ~ / h - ~ ~ (  and (b) a r g ( ~ )  as functions of pkAei,  where  and h 3 ~  are the effective and Spitzer-Harm thermal conductivities, respectively. As in 

Fig. 58.1 1, the solid curves refer to SPRING simulation results with (a) Z = 1. (b) Z = 8, (c) Z = 61, and (dl  Z =  m [for Z = I .  a r g ( ~ )  <<I] .  Here the dashed 
curve refers to the model of Hamrrlett and Perkins. 
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less, limit as calculated by Hammett and ~ e r k i n s , ~  i.e., values of ICIKSH (also for Z= 1) have been calculated for range 
qHp = -(ik/(k()3(2/n)112 NeTFPut. This gives us the second of bkAei and displayed as circles in Fig. 58.14. As shown, the 
mechanism for the reduction of K, with the upper limit shown simple analytic fit [Eq. (12)] can accurately reproduce the 
by the plot of KHp / K ~ ~  = 9(2n)'l2 ( A / ~ z ) ' / ~  /(I 28pkjlei) more accurate SPRING simulation results. For comparison, 
(dashed curve) in Fig. 58.13(a). the values of K for an undriven plasma [curve Z = 1 in 

Fig. 58.13(a)] has also been plotted in Fig. 58.14. 
Other processes can also affect the electron thermal conduc- 

tivity. Inverse-bremsstrahlung heating. for example, 
preferentially heats low-velocity electrons, which in turn 
modifies,fO and leads to even further reduction of K . ~  Such a 
phenomenon has been recently investigated and shown to have 
a significant impact on both filamentation9 and stimulated 
Brillouin scattering15 in laser-produced plasmas. The corre- 
sponding values of K have been calculated using the - 

L t  
nonlinear FP code SPARK: the following analytical fit to the , km 
simulation results has been proposed:9 - k 

where A, = ln A] is the electron delocal- 
ization length and q = [yo (z)/yo (..)]I1' . (As observed in 
Ref. 9, certain care is needed in defining Z for multispecies 
ions.) The resulting dashed curve (IB) for Z = I is plotted in 
Fig. 58.14 as a function of pkAei. Although the original Figure 58.14 

simulation results were based on a two-Legendre-mode expan- Plot of K I K ~ H  as a function of k U e i  for Z = 1 (as in Fig. 58.13). Here the 

sion for the distribution function (i.e., L = I) ,  the contribution dashed curve refers to the analytic formula for FQ~ (from Ref. 9), and circles 

from higher-order modes have been investigated by ~ ~ ~ ~ ~ l ~ i ~  represent SPRING simulation results with an inverse-bremsstrahlung 
heating source. 

and short6 [using a generalized collision frequency v* of the 
type discussed in "Approximations to the Fokker-Planck 
equation"] and found to be negligible. Summary 

The effect of electron collisionality on the damping of ion- 
Here, we are able to check on the accuracy of Eq. (12) by acoustic waves has been investigated by numerically solving 

using SPRING with an inverse-bremsstrahlung heating source the electron FP and cold-ion-fluid equations. The code 
of the type16 (SPRING) developed for this purpose reproduces the analytic 

results previously obtained for a Lorentz plasma (i.e., without 

inserted on the right-hand side of Eq. (2), where 

e-e collisions). 

The introduction of e-e collisions shows that the Lorentz 
approximation is inadequate near the peak of the damping rate 

112 
at kAei - (zme/mi) . For kAei > (zm,/mi)'12 and Z < 64, 
e-e collisions reduce the damping rate below the Lorentz 
value, though it still remains higher than the yfluid and x. 

A convenient approximation that involves adjusting the 
and q, is the light-wave frequency. The code is then run until e-i collision frequency to model the contribution from e-e 
the distribution function reaches a steady state. In this case, collisions for 1 > 1 has been found to yield errors of up to 10% 
ion motion does not play a significant role. The corresponding in the damping rate. A further generalization of the e-i collision 
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frequency that simulates the contribution from all Legendre 
modes with 1 > 1 has also been discussed. 

(21 + 3) 
J!~-/ 

Calculations of the effective thermal conductivity K for a 
Lorentz plasma have shown significant reduction from the + 
Spitzer-Harm value K ~ H  for kAei > lop4. However, even for (21 - 1) (21 - 1) 

Z as high as 64, e-e collisions extend the validity of the fluid where 
approximation for up to kAei - l o p 2 .  In the limit as 
kAei + ,=-, , K approaches the value 3 ( 2 / ~ c ) ' / ~  Nezl,/k pre- 
dicted by Hammett and Perkins. 

Heating the plasma with a spatially modulated inverse- and v,,,(z1) = 4 n ~ ~ ( e ~ / m , ) ~  l n ~ / v '  is the velocity-depen- 
bremsstrahlungheatingsource,andsolvingforthesteady-state dent e-e collision frequency. Here we note that 
distribution function, has been shown to further reduce K. The cje(fo. ,fo) = C'&(f0, fO)  . 
accuracy of a simple analytic formula previously derived for 
KIB has been verified for up to kAei - lo2. REFERENCES 
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