
Transport and Sound Waves in Plasmas with Light and Heavy Ions 

Ion-transport coefficients are important in various aspects of 
plasma physics. Some of thc most commonly used transport 
formulas have been derived by ~ r a ~ i n s k i i . ~  They are obtained 
by assuming a fully ionized, single-ion-species plasma. Typi- 
cal laboratory plasmas. however, may involve more than one 
species of ions. For example, in magnetic-fusion devices, 
high-Z impurities can be present within the DT fuel. In 
inertial-confinement fusion plastic materials are commonly 
used ac ahlators, which then give rise to carbon and hydrogen 
ions. To calculate the transport of ions in such plasmas, 
within the framework of single-fluid theory, it is usual to 
employ an average-ion model in conjunction with the 
Braginskii formulas. Thc aim of this article is to show that such 
a simple procedure can considerably underestimate the 
levels of thermal diffusion: viscosity, and joule heating for a 
mixture of light and heavy ions. Implications for the damping 
of ion-acoustic waves will be shown. 

Let us now consider a fully ionized plasma composed of 
approximately equal numbers of light and heavy ions (identi- 
fied by 1 and h, respectively). It is clear from the above 
equations that if Zh >> Z I ,  the transport will be dominated by 
the light species. However, since it is convenicnt to use a 
single-ion-species formalism, rather than treat the transport of 
each species separately, it is common to use Eqs. (1)-(3) with 
some appropriate average (denoted here by ( )) for mi and Zi. 
A popular approach is to use 

and 

We start by recalling the formulas for the ion thermal 
conductivity and viscosity coefficients in an unmagnetized where 
single-ion-species plasn~a. They are, respectively (incgs units), 

rzi = nl + n/, 

ni7;.ti 
K; = y; - 

mi 
(I) To investigate the accuracy of this averaging procedure 

we need to recalculate the transport coefficients. The linear- 
and ized Fokker-Planck equation, written in the frame of [he 

light-ion species with mean velocity ul (obtained by expanding 
77. = p.n.T.z. 

I 1 1 1 1 '  ( 2 )  the distribution function as  f = fo + w .  fl / w , where 
w = v -  ul is the intrinsic velocity), is given by2 

where 1;- = 3.91, pi = 0.96, n; is the number density, mi is the 
mass, and Ti is the temperature (in ergs). The ion-ion collision 
time for 90" angular scattering is given by (Cf  + Cih) = wV'd + [ z E -  

z. = 
3&7y2  

(3) where d/dt  = d/dt + ul . v , fo is the isotropic Maxwellian 
' 4,%e4% (z: i2 ln A; ' distribution, f, is the anisotropic part of the distribution (re- 

sponsible for the transport), E: is the electric field, and c," and 
cIN' are the anisotropic parts of thc collision operators acting 

where e is the magnitude of the electron charge and lnA; is on f l .  Equation (4) has been derived with the standard assump- 
the Coulomb logarithm. tions of strong collisionality (which imply that Ifl(<< fo) and 

22 LLE Re~~ierr: Volume 57 



TRANSPORT AND SOUND WAVES 

negligible contribution from electron momentum exchange. and the momentum exchange rate, 
Indeed, in the absence of l-h collisions, Eq. (4) predicts the 
classical single-ion-species thermal conductivity of Eq. (1). n/ ml Rlh = -POnlVq - a 0  -(ul - u h )  In our case, however, C , I " / C ~ ~ ~  - n l l ~ l 1 2 / ~ t 1 ~ 1 2  >> I means 

Zlh 
that l-h collisions dominate over 1-1 collisions. Furthermore, 
the collision operator cllh may be considerably simplified in 
the limit mh >> ml to become2 du1 =mlnl-+VpI + V . n l  -ZlenlE.  

dt  
(7) 

where 

and uh is the mean velocity of the h species (necessary to 
ensure momentum conservation). 

Substituting this simplified collision operator back 
into Eq. (4) and expanding the right-hand side of that 
equation yields 

We note that this equation is equivalent to the one used for 
modeling electron transport in high-Z plasmas. 

Substituting Eq. (5) into the heat flow formula, 

Here the thermal conductivity is 

where 

a. = 3 ~ 1 3 2 ,  Po = 312,and yo = 128/3~.Thest ress tensor  
n1, which has been added to Eq. (7), will be subsequently 
evaluated. By analogy with electron-transport theory we iden- 
tify ao, Po, and yo as the resistivity, thermoelectric, and electron 
thermal diffusion coefficients, respectively (in the high-Z 
limit). (Note the extra 1/& factor in our definition of 
zll,.) These results are in close agreement with the work of 
~ i r s h m a n , ~  who derived the thermal transport and momentum 
transfer coefficients numerically (via a Sonine polynomial 
expansion) for plasmas of arbitrary composition. 

By comparing Eq. ( I )  with Eq. (8) we note a significant 
increase in the conductivity coefficient y. Differences with 
regards to the mass and Z dependencies are also apparent. 
The ratio between the conductivities is given by 

2Z " 5 1 
ql = -ml j dww fl , (6) If we consider a fully ionized CH plasma, where ml = nip 

0 is the proton mass, (mi) = 6.5tnp, nl = nh , (Zi2) = 18.5, 
ZI2 = I ,  and Zh2 = 36, we obtain K ~ ~ / ( K , )  = 60. The thermal 

and using the velocity moment / d w ~ l ~ f ~ '  to substitute for conductivity contribution from the h species is expected to be 
(Vpl - ZlenlE + rtltnldul ld t ) ,  we obtain negligible since 
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Comparisons with the conductivity of apure-Hplasma (K/) and 1.1 - (nh / j l i )  (z12/zh2) << . 
a pure-C plasma ( K ~ )  show that ~h : q h  : q = I : 306 : 4500. 

The same type of analysis can be used to calculate the To illustrate the importance of these results we calculate 
viscosity coefficient. The linearized Fokker-Planck equation the damping of collisional ion-acoustic waves in a CH 
describing the stress tensor contribution to the distribution plasma. Writing u, = (6ui, 0,0) exp(ikx - iw,t) etc., the lin- 
function, which is now expanded as earized single-species ion fluid equations, assuming 

collisionless and isothermal electrons, become 

is given by2 

where 

( 1  1) 

and 

The perturbed electric potential, assuming quasi-neutrality 
is the rate-of-strain tensor of the 1 species (superscript T and neglecting Landau damping, is given by 6@ = 6ni Te/eni . 
denotes the transpose and I is the unit dyadic). From the 
definition of the anisotropic part of the pressure tensor, Equations (15)-(17) yield a cubic dispersion relation, with 

roots mi corresponding to two counter-propagating and decay- 
ing ion-acoustic waves and a zero-frequency entropy wave 

8xm1" 1 4 
=-qfiUl = T j f 2 ~  d w ,  (12) (e.g., Ref. 4). By requiringstrongcollisionality, i.e., airi << 1, 

0 we are able to simplify the dispersion relation and obtain the 
following expressions for the ion-acoustic mode: 

we find that 

where p0 = 25614% = 1.81. Note that this value of po ex- 
tends the electron viscosity given by Braginskii [i.e.. 
pO(Z = 1) = 0.731 to the high-Zlimit. 

As before, we can compare Eq. (13) with the averaged 
version of the standard formula [Eq. (2)] to obtain 

112 . 
where vi = (7;:/mi) is the ion thermal velocity, /li = viri  
is its mean free path, and c, is the sound speed. 

( I4)  To generalize these results to a plasma with light and heavy 
ions we would strictly need separate fluid equations for each 
species, and the resulting dispersion relation would be a sixth- 

Using the example of a CH plasma we then find that order polynomial in w. Instead, however, we can use the 
qlh/(qi)  = 5 .  The viscosity contribution from the h species is fact that (1m(w)l << / ~ e ( o ) l  to calculate the damping 
expected to be small since direct1 y from the rate of entropy production. This approach, 
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described in detail by ~ r a ~ i n s k i i , ~  is simpler than solving and 
the dispersion relation and provides further physical insight 
into the damping processes. 611~ = &qr = 6cg cos( kx - m) 

The dissipative processes (thermal conduction, viscosity, 
and joule heating) are much weaker for the heavy particles Using Eq. (7) to evaluate 6ul - 8uh to first order in tlh then 
than for the light, so we consider only the entropy of the light yields 
particles. We start with the entropy balance equation 

where Sl = sinl is the specific entropy, and (to lowest order in 
rlh) Qlh = -Rlh. ( u r  - uh)  represents the heating of the light The amplitude damping rate is given by 
particles resulting from collisions with the heavy particles. To 
calculate the damping of a small-amplitude sound wave, we 
define the average over the wavelength L by example T. dFl.  - 1 

~ m ( w )  = - --L - , E = - nirnicJ262 . 
2r dt 2 

(21) This expression gives the ratc at which the energy of the wave, 
E, is degraded to heat. The resulting damping rate formula is 

Averaging Eq. (20) we then obtain an expression for the rate 
of entropy production in the wave: 

~m(wllz 

k'l 

We represent the amplitude of the wave by 

6ni Inl = 6nl, /nh = 5 sin(kx - wt) . 

so that to lowcst order in rlh we have 

T j = T h r 7 ; : ,  

ST /?  =2/3(sin(kx-wt), 

112 
where A[h = virlh and al = (q  /m1) . Here we can readily 
identify contributions due to thermal diffusion, viscosity, and 
joule heating by the coefficients yo, po, and no, respectively. 

An interesting feature of Eq. (24) is that it predicts the 
dominance of thcmmal diffusion over viscous effects for 
( m l / ( m i ) ) ( 5  + 3(zi)~,/7;.) < 1512 (is. .  T,/q < 4.2 for a 
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CH plasma, where (zi) = 3.5 and ( t n i ) / m l  = 6.5); whereas in 
the conventional formula the viscous damping is always domi- 
nant. More important, however, is the emergence of a 
joule-damping mechanism that is not present in the single- 
fluid model. It is easily shown for the case of CH plasma that 
this mechanism is dominant and at least three times larger 
than the thermal-diffusion mechanism. In terms of overall 
damping rate, a comparison between Eqs. (19) and (24), for 
CH. shows that 

This predicts an increase in the damping rate by at least a 
factor of 58. 

Another interesting feature of Eq. (24) is that the joule- 
damping mechanism becomes independent of Te jT; for plasmas 
in which both species of ions have the same charge-to-mass 
ratio, so ( z i ) / ( m i )  = Z, /m,  .In such aplasma the electric field, 
which is the only mechanism by which the electron pressure 
can affect the ions. cannot drive a velocity difference in the two 
species, and so cannot contribute to joule heating. In this casc, 
the viscous damping can evcntually dominate for sufficiently 
large 7;,/7;:. 

In summary, the ion-transport coefficients have been calcu- 
lated for a fully ionized unmagnetized plasma composed of 
light and heavy ions. The results show that using standard 
single-ion formulas with averaged ion masses and ionizations 
can lead to significant underestimations of the thermal conduc- 
tivity, viscosity, and joule dissipation. The implications for the 
collisional damping of ion-acoustic waves are that joule heat- 
ing and thermal diffusion can become the dominant damping 
mechanisms and the overall damping rate increases. 
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