Transport and Sound Waves in Plasmas with Light and Heavy Ions

Ton-transport coefficients are important in various aspects of
plasma physics. Some of the most commonly used transport
formulas have been derived by Braginskii.! They are obtained
by assuming a fully ionized, single-ion-species plasma. Typi-
cal laboratory plasmas, however, may involve more than one
species of ions. For example, in magnetic-fusion devices,
high-Z impurities can be present within the DT fuel. In
inertial-confinement fusion plastic materials are commonly
used as ablators, which then give rise to carbon and hydrogen
ions. To calculate the transport of ions in such plasmas,
within the framework of single-fluid theory, it is usual to
employ an average-ion model in conjunction with the
Braginskii formulas. The aim of this article is to show thatsuch
a simple procedure can considerably underestimate the
levels of thermal diffusion: viscosity, and joule heating for a
mixture of light and heavy ions. Implications for the damping
of ion-acoustic waves will be shown.

We start by recalling the formulas for the ion thermal
conductivity and viscosity coefficients in an unmagnetized
single-ion-species plasma. They are, respectively (incgs units), !
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where ¥ = 391, p,; = 0.96, n; is the number density, m; is the
mass, and 7 is the temperature (in ergs). The ion-ion collision
time for 90° angular scattering is given by
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where e is the magnitude of the electron charge and InA; is
the Coulomb logarithm.
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Let us now consider a fully ionized plasma composed of
approximately equal numbers of light and heavy ions (identi-
fied by { and h, respectively). It is clear from the above
equations thatif Z, >> Z;, the transport will be dominated by
the light species. However, since it is convenicnt to use a
single-ion-species formalism, rather than treat the transport of
each species separately. it is common to use Egs. (1)—(3) with
some appropriate average (denoted here by ( )) for m; and Z;.
A popular approach is to use

<mi> = (”lml + nhmh)/”i ,

(Z))=(m2; +n,Zy,) ;.
and
(z2)=(mz* + m,2,2) ;.
where
n=n;+ny.

To investigate the accuracy of this averaging procedure
we need to recalculate the transport coefficients. The linear-
ized Fokker-Planck equation, written in the frame of the
light-ion species with mean velocity u; (obtained by expanding
the distribution function as f= fy+w-f;/w, where
w = v—u; is the intrinsic velocity), is given by?2
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where d/dt=0/dt+u; -V, fy is the isotropic Maxwellian
distribution, f; is the anisotropic part of the distribution (re-
sponsible for the transport), E is the electric field, and Cln and
C 1”’ are the anisotropic parts of the collision operators acting
onf;. Equation (4) has been derived with the standard assump-
tions of strong collisionality (which imply that ‘f1| << fp)and
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negligible contribution from electron momentum exchange.
Indeed, in the absence of -k collisions, Eq. (4) predicts the
classical single-ion-species thermal conductivity of Eq. (1).
In our case, however, Cl”’/Clll ~n,,Z,,2/n,Z,2 >>] means
that /-A collisions dominate over [-I collisions. Furthermore,
the collision operator Cl”' may be considerably simplified in
the limit mjy, >> m; to become?
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and uy, is the mean velocity of the h species (necessary to
ensure momentum conservation).

Substituting this simplified collision operator back

into Eq. (4) and expanding the right-hand side of that
equation yields
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We note that this equation is equivalent to the one used for
modeling electron transport in high-Z plasmas.

Substituting Eq. (5) into the heat flow formula,

2r T \
q = ?ml.[ dwwsfll , (6)
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and using the velocity moment j dww3fll to substitute for
(Vp; - ZjenjE + nlm,dul/dt). we obtain

q; =—kpVT + BonyTi(u; —uy)
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and the momentum exchange rate,
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Here the thermal conductivity is
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og=3m/32, By =3/2,and yy = 128/37. The stress tensor
m;, which has been added to Eq. (7), will be subsequently
evaluated. By analogy with electron-transport theory we iden-
tify o, . and y, as the resistivity, thermoelectric, and electron
thermal diffusion coefficients, respectively (in the high-Z
limit). (Note the extra 1/«/5 factor in our definition of
7y,.) These results are in close agreement with the work of
Hirshman,? who derived the thermal transport and momentum
transfer coefficients numerically (via a Sonine polynomial
expansion) for plasmas of arbitrary composition.

By comparing Eq. (1) with Eq. (8) we note a significant
increase in the conductivity coefficient y. Differences with
regards to the mass and Z dependencies are also apparent.
The ratio between the conductivities is given by
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If we consider a fully ionized CH plasma, where m; =m,
is the proton mass, (m;)=6.5m,, n =n, <Z,-2>: 18.5,
Z* = 1,and Z,? = 36, weobtain ky, /(k;) = 60. The thermal

conductivity contribution from the & species is expected to be
negligible since

qn/4q N(”h/”1)(ml/mh)”2(zlz/zh2)<< L.
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Comparisons with the conductivity of a pure-H plasma (x;) and
a pure-C plasma (x;,) show that x, : kj;, : K= 1: 306 : 4500.

The same type of analysis can be used to calculate the
viscosity coefficient. The linearized Fokker-Planck equation

describing the stress tensor contribution to the distribution
function, which is now expanded as

=5 +w-f [ wrww by /w2,

is given by?
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where

U, = Vu, +(Vu,)T —%IV-u,

is the rate-of-strain tensor of the / species (superscript T’
denotes the transpose and I is the unit dyadic). From the
definition of the anisotropic part of the pressure tensor,

x; :_n]hU[ =Mjf21w4dw, (12)
15 0
we find that
M = Ko TiTyp » (13)

where 1y = 256/45r = 1.81. Note that this value of L ex-
tends the electron viscosity given by Braginskii [i.e..
Uo(Z =1)=0.73] to the high-Z limit.

As before, we can compare Eq. (13) with the averaged
version of the standard formula [Eq. (2)] to obtain
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Using the example of a CH plasma we then find that
um /<n,~> = 5. The viscosity contribution from the / species is
expected to be small since
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T/ ~ (g ) (g g )12 (22/2,%) <<1.

To illustrate the importance of these results we calculate
the damping of collisional ion-acoustic waves in a CH
plasma. Writing u; = (5ui,0,0)exp(ikx—ia)it) etc., the lin-
earized single-species ion fluid equations, assuming
collisionless and isothermal electrons, become

—;0n; + nkdu; = 0, (15)
a)im,-n,ﬁul- = kT,5nl + kST,-n,- + k6ﬂ'[xx + k5¢niZ,-e y (16)

and
3
- Ewini&; + kniTi5ui = —k&]i . (17)

The perturbed electric potential, assuming quasi-neutrality
and neglecting Landau damping, is givenby 8¢ =on; T, /en; .

Equations (15)—(17) yield a cubic dispersion relation, with
roots w; corresponding to two counter-propagating and decay-
ing ion-acoustic waves and a zero-frequency entropy wave
(e.g..Ref. 4). By requiring strong collisionality,i.e., ®;7; << I,
we are able to simplify the dispersion relation and obtain the
following expressions for the ion-acoustic mode:

Re( o; T
—‘ () = §+—Z’T" =c,, (18)
k 30T
Im| o, 2 .
o) __2f 2. ao)
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where v; = (T,-/m,-)”2 is the ion thermal velocity, 4; = v;1;

is its mean free path, and ¢, is the sound speed.

To generalize these results to a plasma with light and heavy
ions we would strictly need separate fluid equations for each
species, and the resuiting dispersion relation would be a sixth-
order polynomial in @. Instead, however, we can use the
fact that |Im(w)|<<[Re(®)| to calculate the damping
directly from the rate of entropy production. This approach,
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described in detail by Braginskii,! is simpler than solving
the dispersion relation and provides further physical insight
into the damping processes.

The dissipative processes (thermal conduction, viscosity,
and joule heating) are much weaker for the heavy particles
than for the light, so we consider only the entropy of the light
particles. We start with the entropy balance equation

oS
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where §; = s;n,; 1s the specific entropy, and (to lowest order in
T O = —Ry,- (1 — uy ) represents the heating of the light
particles resulting from collisions with the heavy particles. To
calculate the damping of a small-amplitude sound wave, we
define the average over the wavelength L by examnple

— 1.1
S,:—L—josldz. (21)

Averaging Eq. (20) we then obtain an expression for the rate
of entropy production in the wave:
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We represent the amplitude of the wave by

ony ny =0ny /ny, = Esinlkx — or).

so that to lowest order in 7y, we have

T;=T,=T,

8T, /T, =2/3&sin (kx — wr),

LLE Review, Volume 57

TrRANSPORT AND SounD Waves

and

Buy = duy, = Ec, cos( kx~ ar).

Using Eq. (7) to evaluate du; — duy, to first order in 7y, then
yields
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The amplitude damping rate is given by
T, dS; . 1 2
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This expression gives the ratc at which the energy of the wave,
g, is degraded to heat. The resulting damping rate formula is

Im(a)l;,)
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where Ay, = v;7y and v; = (Tl/m,)”“. Here we can readily
identify contributions due to thermal diffusion, viscosity, and
joule heating by the coefficients ¥, tg, and o), respectively.

An interesting feature of Eq. (24) is that it predicts the

dominance of thermal diffusion over viscous effects for
([ (m))(5+3(2)T,/T;) <1572 (e, T,/T;<42 for a
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CH plasma, where <Z,-> = 3.5 and <m,~>/m[ =6.5); whereas in
the conventional formula the viscous damping is always domi-
nant. More important, however, is the emergence of a
joule-damping mechanism that is not present in the single-
fluid model. It is easily shown for the case of CH plasma that
this mechanism is dominant and at least three times larger
than the thermal-diffusion mechanism. In terms of overall
damping rate, a comparison between Egs. (19) and (24), for
CH, shows that

Im(wy) 1014347, /7; + 2797, /)

Im ((w;)) 0.86+T,/T;

(25)

This predicts an increase in the damping rate by at least a
factor of 58.

Another interesting feature of Eq. (24) is that the joule-
damping mechanism becomes independent of 7, /T; for plasmas
in which both species of ions have the same charge-to-mass
ratio, so (Z;)/(m;) = Z;/m; . Insuch aplasma the electric field,
which is the only mechanism by which the electron pressure
canaffect the ions. cannot drive a velocity difference in the two
species, and so cannot contribute to joule heating. In this case,
the viscous damping can eventually dominate for sufficiently
large 7, /T:.
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In summary. the ion-transport coefficients have been calcu-
lated for a fully ionized unmagnetized plasma composed of
light and heavy ions. The results show that using standard
single-ion formulas with averaged ion masses and ionizations
can lead to significant underestimations of the thermal conduc-
tivity, viscosity, and joule dissipation. The implications for the
collisional damping of ion-acoustic waves are that joule heat-
ing and thermal diffusion can become the dominant damping
mechanisms and the overall damping rate increases.
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