
Stability Analysis of Unsteady Ablation Fronts 

 hec classical ~ a ~ l e i ~ h - ~ a y l o r  instability occurs when a heavy 
fluid is accelerated by a lighter fluid. In inertial-confinement 
fusion (ICF) the heavy fluid is the compressed ablated target 
material that is accelerated by the low-density ablated plasma. 
The classical treatment of the incompressible Rayleigh-Taylor 
instability leads to a linear growth rate given by y = $&, 
where k is the instability wave number, g is the acceleration, 
and A is the Atwood number A = ( ph - pl)/(ph + pl) . (pl 
and ph represent the light- and heavy-fluid densities, respec- 
tively.) For typical (ICF) parameters, a classical Rayleigh- 
Taylor instability would produce an unacceptably large 
amount of distortion in the unablated target, resulting in a 
degraded capsule performance with respect to the final core 
conditions. Thus, it is important to study the possible means for 
suppression of the ablation surface instability in ICE It has 
been recently shown that the ablation process leads to convec- 
tion of the perturbation away from the interface between the 
two  fluid^.^-^ Since the instability is localized at the interface, 
the ablative convection stabilizes short-wavelength modes. 
The typical growth rate of the ablative Rayleigh-Taylor insta- 
bility can be written in the following approximate form:3 

where V, is the ablation velocity and P i s  a numerical factor 
( 0 - 3 -  4 ) .  

In this article we show that a properly selected modulation 
of the laser intensity can significantly reduce the unstable 
spectrum and the maximum growth rate. To treat the analytic 
linear stability of unsteady ablation fronts, we consider a 
simplified sharp boundary model consisting of a heavy fluid, 
with density ph, adjacent to a lighter fluid (PI), in the force 
field g( t )  = g(t)ey in a direction opposite to the density 
gradient [g(t) < 0 and ey is the unit vector in the direction of 
the density gradient] and with an arbitrary time dependence. 
The heavy fluid is moving downward with velocity 
Uh  = -Vae,. . and the lighter fluid is ejected with velocity UI. 

The equilibrium velocities Ul(t) and Uh(t) are both dependent 
on the ablation ratio per unit surface m(t )  that is treated as 
an arbitrary function of time. The equilibrium can be readily 
derived from conservation of mass and momentum. We con- 
sider a class of equilibria with nonuniformities localized at the 
interface between the two fluids. Continuity of the mass flow 
and the pressure balance across the interface lead to the 
following conditions: 

where Ph and PI represent the pressure of the heavy and light 
fluid, respectively, at the interface. Notice that UI and Uh are 
negative in the chosen frame of reference. We assume that the 
discontinuities in the equilibrium quantities can be removed 
by including the physics of the ablation process. 

The linear stability problem can be greatly simplified by an 
appropriate choice of the linearized equation of state. It is 
widely known that the most Rayleigh-Taylor unstable pertur- 
bations are incompressible. Furthermore, ablative stabiliza- 
tion is a convective process and is, therefore, independent of 
the equation of state. It follows that the essential physics of the 
instability can be captured by a simple incompressible flow 
model. The stability analysis proceeds in a standard manner. 
All perturbed quantities are written as Ql = ~ ( y ,  t )  exp(ikr) , 
and the system of equations describing the linear evolution of 
the perturbation assumes the following form: 
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where the subscriptj denotes the heavy fluid region (j = h)  and 
the light fluid region (j = I )  and d,. = a/&, dt = dl&.  The Uh = -Va 

two regions are separated by an interface (the ablation front) 
that moves with the heavy fluid. In order to match the solutions I 

by a comparison with a nonablative equilibrium (Uh = 0). In 
that case the interface [ y = q(t )  exp( ikr)l moves with the 

in the two regions, an equation describing the evolution of 
the interface is needed. Such an equation can be easily derived 

heavy fluid, and the rate of distortion (dt$) is equal to the / A -- \ I / I: '---I ---- 
normal component of the velocity, dtfi = Ghy(y = 0, t )  . In the 

N I - \ 1 
i 

----------------- 

ablative case, the heavy fluid is moving toward the ablation \ /- 
/ ! 

% - # /  '\,A- / 
front with velocity Uh = -Va. A Lagrangian surface, coming n 1 I 
from y = +M, would become distorted as it approaches the 

I 

interface where the instability is localized (Fig. 57.1). As 1 
for static equilibria, the rate of distortion (51 of that surface is I UO i j  (t) eikr 1 

\ 1 

still equal to the normal component of the velocity: 

TC3354 

~p- 

(5a) Figure 57.1 I 
Deformation of a Lagrangian surface approaching the ablation front. 

However, since the surface is moving, the time derivative has Once fi is known. a set of jump conditions relating the 
to be convective i d t  = d, + u h d Y ) .  From Eq. (5a) the distor- values of the physical quantities in the two regions can be 
tion of a Lagrangian surface can be written in the following derived by writing the time derivative of any perturbed 
integral form: quantity at the ablation front as d , ~  = -( Qh - Ql)drij  6(y) 

and integrating the incompressibility and conservation equa- 

(5b) 
tions across the thin ablative layer. A short calculation yields 

E(t) = 1 -- ~ ~ ~ [ y ~ ( t ' ) , t ' ] d t ' .  

where 

t ' 
rn(t' ) = 1 Uh( t" )dtf' + constant 

is the unperturbed trajectory of a Lagrangian surface. In the 
absence of smoothing effects, the ablation front coincides with 
that Lagrangian surface whose equilibrium orbit overlaps the The first of Eqs. (6) follows directly from the incompressibility 
ablation front (y = 0) at time t' = t . The unperturbed trajectory condition V . i = 0 .  A better representation of the perturbation 
of such a surface is given by at the interface can be obtained by using an equation of state 

and calculating the jump in the energy.2 This approach would I 

greatly complicate the calculation. However, as shown in 
 YO(^') = u , , ( r " ) d ~ .  Appendix A, when the flow is subsonic 

I 
and the equation for the evolution of the ablation front (fi) can 
be written in the following differential form: 

[uh2*u? << P ~ I P ~ ~ P I I P I ] ~  

3111, 
the flow of internal energy across the interface has to be ) 

dtij = Ehv[O.  t] - uh (t)11 -- [yO(tf), t']dt'. ( 5 ~ )  conserved and the rncompressible result is recovered. - ay 
w! 
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The next step is to solve Eqs. (4) in the two regions and then at y1 + - w , and il( t )  is an arbitrary function of t. The 
apply the jump conditions and the boundary conditions at functions ? ( y l )  and , f(t) satisfy the following differential 
y  = f -. Since the heavy and light fluids extend to infinity and equations: 
the instability is localized at the interface, the perturbation 
must vanish at y  = f-. 

The solution of the linearized equation in the heavy-fluid 
region ( h )  is greatly simplified by the following transforma- 
tion: yh = y -  J i ~ ~ ( t ' ) d t '  . A straightforward calculation 
leads to the following form of the perturbed variables in 
region h: 

i where i h ( t ) ,  P h ( y h ) ,  and i i ( y h )  are arbitrary functions of 
t  and yh. and k  is chosen to be positive ( k  > 0 ) .  In order 

j to satisfy the boundary conditions, ii and bh must vanish at 
yh+w. Since lim,,, yh = -, it follows that ii and ph as- 
ymptotically vanish in time. In our asymptotic stability 
analysis, we neglect all the quantities that do not grow in 
time. Thus, we set ii = 0  and ph = 0 .  Furthermore, because 
of the incompressibility condition and negative flow velocity, 
& = 0  at all times. 

where 

The next step is to recognize that, using Eqs. (7) in Eq. (5c), 
the interface equation can be rewritten in the following 
form: ( a ,  - k u h ) i j  = Uhy(y  = 0.t) .  

After substituting Eqs. (7) and (8) into the jump conditions 
[Eqs. (6)] and using the differential form of the interface 
equation. the following ordinary differential equation for f (  t )  

is derived: 

+ ~ [ k u ~ ( d ,  - k u h ) +  kg]!}  

2 
We apply the same procedure to the light-fluid region (1) - Ak UI1: = 0  , 

and define the new coordinates yl = I. - ( t d t  . The 
solution of the linearized equations in region I can be written where 
in the following form: 

A ( ~ h  - ~1 ) / ( ~ h  + P I )  

El, = i l ( f )  ~ X P ( ~ Y I )  + ; ( y l )  + ? ( ~ l ) , f ( t )  is the Atwood number. For ICF applications, the appropriate 
ordering 

(8) U h / u 1  = p I / p I l  - ( l - A ) < < I  and g > d U 1 / d t .  

To lowest order in I-A, the last term in Eq. (11) can be 
neglected, yielding 

where b(y , )  and PI ( y 1 )  are free functions of yl that vanish { ( a f  - k u l ) ( d t  - XU/, )+ ~ [ k u l ( d r  - k u h  ) + k g ] } i  = 0. ( I 2 )  
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Equation (12)  can be further simplified by using the Ansatz Va=Vao. I. and Po are two slowly varying functions of time 

and by neglecting other terms of order ( 1  - A )  < < 1. After 
some straightforward manipulations, we obtain 

where g  and Va are functions of time with Va the ablation 
velocity. Observe that, for steady equilibrium configurations, 
Eqs. (13)  and (14) yield the normal mode solution for 
77 - exp(yt) : with y satisfying the dispersion relation 

It is easy to recognize that the contribution of the second 
term under the square root is relevant only at very small 
wavelengths, where the mode is already strongly stabilized by 
convection [the last term in Eq. (15)l. Neglecting such a term 
in Eqs. (14) and (15)  would cause only a small shift of the 
cutoff wave number [ ~ k , / k ,  = 1/91, which is consistent 
with the order of magnitude of the previous approximations. 
After neglecting such a term, Eq. (15)  reproduces the numeri- 
cally derived growth rate of Ref. 3  with P = 1.5. Equa- 
tions (13)  and (14),  which are valid for arbitrary unsteady 
configurations, can now be applied to the particular equilib- 
rium obtained by temporally modulating the laser intensity. 
Consider aplanar target of thickness d  and density po irradiated 
by a uniform laser beam. The periodically modulated laser 
intensity [ I ( t )  = Io ( l+  Asin mot) ,A 5 11 inducesanoscillat- 
ing ablation pressure Pa ( t )  = Po (1 + Ap sin mot) and ablation 
velocity ~ , , ( t )  = vao(l + A ,  sin mot) with A p  5 A  and 
A,  5 A .  For simplicity, we assume that the ablation pressure 
and the ablation velocity are directly proportional to the laser 
intensity, and the ablation process develops on a very slow 
time scale compared to an oscillation period and the sound 
transit time through the target [V, << cs,c, is the sound speed]. 
Although the scaling va - fi - [I + ~ s i n ( m ~ t ) ] ~ "  is more 
appropriate than a simple linear dependence, the numerical 
simulations show that the ablation velocity is almost insensi- 
tive to the oscillations in the laser intensity ( A a <  < 1 )  and 

A simple estimate of the acceleration of the ablation front 
can be derived by solving the one-dimensional compressible 
fluid equations of Ref. 6  for a target accelerated by the 
ablation pressure. As shown in Appendix B, the time- 
dependent acceleration can be written in the following form: 

where L-l denotes the inverse Laplace transform, s is the 
Laplace variable. and ;,(s) is the Laplace transform of the 
ablation pressure. The quantity & = 5 V,(t  ) d t  is the posi- 
tion of the ablation front in the Lagrangian frame of the moving 
target. In deriving Eq. (16),  the slow ablation time scale 
( -  d l ~ , )  has been treated as an independent variable. A 
simple expression for g(t) can be derived in the asymptotic 
limit ( d / V a )  > t >> ( d l c ,  ) . yielding 

where go = Po /poda , cx = dp( mod, /cs  ) cot( modLz / c ,  ) , and 

E = yzo AamO/gO,  d ,  = d  - &. A more accurate estimate 
of g(t) (and of the parameters go, a, and E ) can be obtained 
by using a one-dimensional code. Later in this article we will 
use the one-dimensional hydrodynamic code LILAC' to 
derive go, a and E .  However, Eq. (17) gives some physical 
insight into the relevant quantities that affect the oscillation 
amplitude in the target acceleration. In particular. large oscil- 
lations can be achieved for values of the modulation period 
shorter than the sound transit time through the target 
[To = 27c/m0 < d / c S ]  . Before proceeding further, it is impor- 
tant to define the range of validity of the stability model for 
the prescribed equilibrium. The oscillations in the ablation 
pressure propagate inside the target at the sound speed. Thus, 
the equilibrium parameters can be considered as uniform over 
a distance A?< c,To.  The stability analysis, carried out for a 
uniform semi-infinite medium, can be applied to perturbations 
with sufficiently short wavelength kAy > 1. It follows that a 
necessary condition for the validity of the stability model is 
kc,,To >> 1 .  For such wavelengths, Eq. (17)  can be used in 
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Eq. (14) to derive the function c ( t ) .  Thus, Eq. (14) can be 
written in the following form: 

where yc = fii is the classical growth rate, 

and 

Notice that Eq. (1 8) is a Mathieu equation, whose solution 
has the form 5(t) = o(t)exp(pt), with o ( t )  being periodic 
with period q~. Using Eq. (13), the growth rate of the instabil- 
ity can be easily derived: 

where p = 1.5 for the simplified stability model. However, 
when Eq. (19) is compared to the Takabe formula, we let 

T p = P = 3- 4 .  In order to find p ,  one needs to numerically 

solve Eq. (18) for one period of oscillation. Figure 57.2 shows 
the parameter p ,  plotted versus the wave number k, for the 
following equilibrium parameters: d = 20 pm. go = 5 x 1015 
cm/s2, A = 1, (V,) = 7 x lo4 c d s ,  c ,  = c d s ,  To = 0.3 x 

s, 4 = 0, and q =0, 2.5, and 3.5. The validity of the 
stability model requires A = 2n/k << 20 pm.  For any value 
of q and q, it is possible to identify intervals of the k axis, 
where Re[p] = 0. We denote such intervals as dynamically 
stabilized (DS) regions, and we emphasize the importance of 
ablative convection [see Eq. (19)] at shorter wavelengths. 
According to Eqs. (1)  and (19), the short-wavelength modes 
are stabilized by convection, and the cutoff wave number is 
kc = g ~ / ~ 2 ~ i  . It follows that an efficient dynamic stabili- 
zation can be achieved by choosing values of q and q that 
cause the first DS region to be located inside the interval 
0 < k < kc. In Fig. 57.3, the growth rates derived from Eq. (19) 
for q = 0, 2.5, and 3.5 and P = 3.5 (as given by Takabe 
et ~ 1 . ~ )  are shown. Observe that as q increases, a better 
stabilization is induced at longer wavelengths, but shorter 
wavelengths can be destabilized (q = 3.5). This short-wave- 
length instability is driven by the oscillations in the acceler- 
ation, with the perturbation having the characteristic structure 
of an oscillatory mode with an exponentially increasing ampli- 
tude. For convenience, we denote these short-wavelength 
modes as "parametric instabilities." 

Furthermore, when the mode wavelength is smaller than the 
density gradient scale length 

Figure 57.2 
Plot of the instability drive term p versus the mode wave number k Figure 57.3 
for modulated ( q  # 0) and unmodulated ( q  = 0) laser intensity, assuming Plot of the instability growth rate versus the mode wave number k for 
d = 20 pm,  go = 5 x 10'5 cm/s2, the Atwood number A = I ,  (V,) = 7 x modulated ( q  # 0) and unmodulated (q = 0)  laser intensity, assuming the 
104 ctds, To = 0.3 ns, and 4 = 0.  same equilibrium parameters as in Fig. 57.1. 
~ ~ ~ - p ~ ~ ~ ~ ~ ~  pp-pppp 
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the sharp boundary model is not valid and Eq. (19) cannot 
be used. 

The results of the analytic theory have been compared with 
two-dimensional simulations obtained using the code 
ORCHID.* We have considered an 18-pm CH planar target 
irradiated by a uniform laser beam of wavelength 1.06 pm. 
The laser intensity is modulated in time with a period of 0.3 ns. 
The modulation amplitude is 100%, and the flat-top average 
intensity is 50 T W / C ~ ~ .  For an accurate comparison with the 
analytic stability theory. we derive the equilibrium parameters 
g, (v,). and q from the one-dimensional code  LILAC.^ 
The result is g = 4.5.10" c m / s 2 ,  (v,) = 7. lo4 c m / s  , 
6 1  1.5 to 2 p m ,  q?~ = 0, and q = 3.5 to 5.5. In the two- 
dimensional simulation, an initial single-wavelength pertur- 
bation evolves for 3 ns. Because of the short modulation 
period, the simulation shows no significant change in the foil 
isentrope with respect to the unmodulated case. Figure 57.4 
shows a comparison between the linear growth rate derived 
from the simulation with the one given by Eq. (19). Three 
regions of the k-axis can be identified: (1) The long-wave- 
length region with k < 0.2 pm-l, where the growth rate is 
virtually insensitive to the modulation of the laser intensity and 
very close to the classical value. (2) The intermediate wave- 
length region with 0.2 < k < 1. For these values of the wave 
number, the dynamic stabilization is particularly effective. 
Observe that for A = 2 n l  k = 7 p m  the mode is com- 
pletely stabilized. (3) The short-wavelength region is defined 
as having a wave number k > 1. In this region k6 > 1 and the 
effect of finite density-gradient scale length cannot be ne- 
glected. Notice that the simulation shows the presence of an 
unstable mode with wavelength A = 5 pm. Using Eq. (19) 
beyond its limit of validity (k6 < 1) and dividing y z  by 
(1+ 8k6) with 6' < 1, we would predict the existence of 
parametric instabilities at shorter wavelengths (Fig. 57.4). 
However, the structure of the perturbation observed in the 
numerical simulation does not clearly show the characteristics 
of a parametric instability. Furthermore, the cutoff wave 
number observed in the numerical simulation (with or without 
laser-intensity modulation) is much shorter than the one pre- 
dicted by Eqs. (1) and (19). The stability of very- 
short-wavelength perturbations needs further investigation to 
determine an accurate value of the cutoff wave number. 

The dynamic stabilization of the Rayleigh-Taylor instabil- 
ity in ICF targets was first observed in numerical simulations 
by J.   or is.^ In this article we have shown the derivation of 
the linear stability theory for unsteady ablation fronts and the 
conditions forthedynamic stabilization of the ablative Rayleigh- 
Taylor instability. The growth rate of the instability has been 
calculated for a sinusoidal modulation of the laser intensity. It 
is shown that an appropriate modulation frequency and ampli- 
tude can stabilize a large portion of the unstable spectrum and 
significantly reduce the maximum growth rate. 

P 1200 Wavenumber (pm-1) 

Figure 57.4 

Comparison of the growth rate obtained from numerical simulations (with 
modulation A and without modulation 0)  and the modified Eq. (19). Here, 

d =  1 8 p m , g 0 = 4 . 5 x  lOl5cm/s2.(V,)=7x 1 0 4 c m / s , T g = 0 . 3 n s , 4 = 0 ,  
A=l,~=3,O6=1.5x10-~cm,q=5.5(dotted),~=4,O6=0.3x10-~cm, 

q =4.5 (dashed). The solid line represents the Takabe formula, and the shaded 

area represents the region with ~6 5 1. 

ACKNOWLEDGMENT 
This work was supported by the U.S. Department of Energy Office of 

Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03- 

92SF19460, the University of Rochester, and the New York State Energy 
Research and Development Authority. The support of DOE does not consti- 
tute an endorsement by DOE of the views expressed in this article. 

LLE Review, Volume 57 



APPENDIX A: CONDITIONS FOR where I is the power deposited at the ablation front. Integrat- 
INCOMPRESSIBLE FLOW ing Eq. (A .3 )  and linearizing the variables yields the follow- 

ing jump condition for the fluid energy: 
A better model for the Rayleigh-Taylor instability can be 
obtained by replacing the incompressibility condition with an 
adiabatic equation of state. In the heavy- and light-fluid re- 3  5  
gions, where the velocity and density equilibrium profiles are d t f i ( ~ h u ?  - P P ~ ~ ? )  + (? Ph"? + ~ h ) ~ h ~  

uniform, the linearized adiabatic equation of state can be 
written as 

where Pj represents the equilibrium pressure in the region j. 
Ordering dt - & - kUh and using the momentum conserva- 
tion equation, one finds that p j  - p j U j f i j ,  d j P j  - k j j ,  and where all the quantities are calculated at the unperturbed 
( d p J / d y )  - pg.  A simple comparison between the two ablation front ( y  = 0 ) .  In the derivation of Eq. (A .4) .  the 
terms in Eq. ( A .  1) yields incompressible results in the two regions have been used. The 

ordering for the perturbed quantities can be derived from the 

P,V . U j  1  conservation equations -- , (A .2 )  
( a t  + ujaj 1 ij + u j y  ( ~ P J  / d y )  M.7 

alfi " fihy/kuh I ) j  - p j u j f i j  - p h f i l z , / ~ l  (A .5 )  

where M~~ = 3 p j ~ ; / 5 ~ j  is the Mach number in region j. 
For subsonic flows (Mj  << I ) .  Eq. ( A .  1) leads to the incom- Substituting the relations in Eq. (AS)  into Eq. (A .4 )  yields 
pressibility condition V . v j -  0 .  Although the flow in the the following equation for the perturbed normal velocities at 
two regions is clearly incompressible, at the interface between the ablation front: 
the fluids, where the equilibrium velocity and density have 
very sharp gradients, the conclusions derived above do not 
immediately apply. 

A  jump condition relating the energies in the two regions 
can be derived by integrating the adiabatic equation of state For M; + 0 ,  Eq. ( 4 . 6 )  reduces to 
across the ablative layer. Following the work of Ref. 2,  the 
calculation can be greatly simplified by using the conservative - - 
form of the equation of state: uhy = u ~ y  

Observe that the latter can also be derived from the incom- 
pressibility condition (V . v  = 0 )  integrated across the ablative 
layer. Thus, the assumption of incompressible flow holds at 
the ablation front as well as at the two uniform regions on both 
sides of the interface when the Mach number is much less than 

= p g . v + 1 6 ( y - i j ) ,  (A .3 )  unity. i.e., the flow is subsonic. 
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APPENDIX B: UNSTEADY EQUILIBRIUM OF AN 
ACCELERATED TARGET 

The time evolution of the equilibrium of a planar target 
accelerated by an externally applied pressure P,(t) can be 
obtained by solving the one-dimensional fluid equations of 
Ref. 6. In ICF the accelerating pressure is induced by the 
laser irradiation. In order to simplify the calculation, we 
rewrite the fluid equations in a Lagrangian frame, and we 
neglect the reduction of the target thickness due to ablation. 
Let L.T( j , t )  be the trajectories of the fluid elements and y 
the Lagrangian coordinate: i.e., the position of the fluid ele- 
ments at time t = 0. As shown in Ref. 6, a linear wave equa- 
tion describing the evolution of the fluid trajectories can be 
derived from the nonlinear set of equations 

where 

and s is the Laplace variable. Using the identity 

where c, is the sound speed of the target at rest. We consider 
a planar target of thickness d ( 0  I 7 < d )  with the irradiated 
side at 7 = 0 [ p ( ~ , t )  = ~ , ( t ) ]  . On the surface opposite to 
the laser ( - J =  d ) ,  the external pressure is negligible 
[ p ( d ,  t )  = 01 . These boundary conditions lead to the follow- 
ing equations for the trajectories at L = 0 and ? = d :  

and taking the inverse transform of Eq. (B.4), we obtain the 
acceleration of the ablation front 

We let the laser irradiation start at time t = 0 (target at rest). 
Thus, the velocity at t = 0 is zero through the target: 

Equation (B.l), together with the boundary and initial 
conditions [Eqs. (B.2) and (B.3)1, can be solved in the Laplace 
transform domain. A short calculation yields the following 
form of the Laplace transform (L) of the acceleration: 

cosh [:; (d - F)] 
P ( s )  

K(s, y) = - S (B.4) 
PC, sinh (%) 

where O(t) is the Heaviside step function. Focusing on an 
oscillating applied pressure induced by an oscillating laser 
intensity 

we determine the asymptotic value of the acceleration after 
many periods of the oscillation ( t o o  >> I ) .  A short calcula- 
tion yields 

where a = Ap(o0d/c,)  cot(ood/cs).  The first term on the 
RHS represents the incompressible component of the accel- 
eration. The other terms are induced by the oscillation in the 
applied pressure and vanish for c, + . i.e., incompressible 
fluid. Observe that Eq. (B.7) yields the resonant condition for 
the oscillations, ood/ncs = n ,  where n = 1,2,. . . . 
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