
Section 1 
PROGRESS IN LASER FUSION 

1.A Implicit and Conservative Difference Scheme 
for the Fokker-Planck Equation 

The Fokker-Planck (FP) equation plays an important role in the investigation of 
clectron transport processes in laser-produced plasmas.'~2 Much of the progress 
in the numerical solution of the FP equation has been possible following the 
pioneering work oSChang and ~ o 0 ~ e r . j  They proposed a practical differencing 
scheme that preserved particle number and allowcd the distribution function to 
evolbe through a series of quasi-equilibria, while maintaining positivity at all 
energy groups. 

Recently, however, Larsen et  ~ 1 1 . ~  showed that although the Chang-Cooper 
scheme works well for linear problems, such as the scattering of test particles, 
it sometimes fails for general nonlinear problems involving the evolution of 
distribution functions farfromequilibrium. ~arsenetal.'generalized the Chang- 
Cooper method to allow fora more efficient solution of the nonlinear FPequation 
uxing larger time steps. Unfortunately. their approach relies on having analytic 
expressions for the collision coefficients, which are not generally available. 

One important property of the FPequation not addressed by the above authors 
is energy conservation. ~ a n g d o n ~  introduced this property to the Chang-Cooper 
scheme, for Coulomb scattering between like particles, by appropriately 
differencing the collision coefficients. This modification has been successfully 
tested by ~ h o ~  and found to ensure adequate energy conservation provided the 
distribution function does not change substantially over one time step.? For 
modeling thermal-transport problems in laser-produced plasmas, Epperlein et 
a1.l found that energy conservation could be further improved through a 
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"predictor" step, whereby the collision coefficients are estimated by linearly 
extrapolating the distribution function in time. Berezin et ul.' developed further 
numerical schemes that conserved not only particle energy and density but also 
maximizedentropy. Unfortunately, their methodsrely on explicit time integration 
and are thus of limited practical use. 

In this article we develop a fully implicit finite-difference method for solving 
the FP equation for like-particle collisions in plasma that conserves both energy 
and number density enactlv. The essence of our approach is to first linearize the 
FP equation, with the collision coefficients as defined by Langdon, and then 
apply the Chang-Cooper approach to difference the equation in velocity space. 
The conservative properties of the scheme are illustrated by considering the 
standard test problem6 of the thermali7ation of a nearly monoenergetic electron 
distribution in ahomogeneous plasma. It is shown that, whereas the conventional 
scheme is limited by energy conservation to time steps no larger than about 100 
thernial collision timcs, there is no such limitation with the new scheme. 

Although the numerical solution of the finite-difference equation in our 
proposed scheme requires thc inversion of a full matrix rather than a tridiagonal 
m a t r i ~ , ~  the relaxation in time-step constraints can sometimes far outweigh the 

factors of greater than ten in computational speed. 

In the next section the FP equation is described, and its basic conservation 
properties are reviewed. Then the numerical scheme is developed, and the test 
problem of electron thermalization in a homogeneous plasma is presented. In the 
last two sections we describe simulations of laser-produced plasmas using an FP 
code and summarize the main conclusions. 

The Fokker-Planck Equation and Its Conservation Properties 
Thc FP equation describing Coulomb collisions of like particles in a 

homogeneous, fully ionized plasma is given by 

where , f (v ,  t )  is the normalized particle distribution function, such that 
m 

NO = 5 d7171~ f (v, t = 0) 
0 

is the initial number density. The collision time between thermal particles is 
defined by 

where o, = ( T ~  1 m)"' is the thermal velocity, To is the initial temperature. eir 
the charge, m is the mass, and InA is the Coulomb logarithm. The collision 
coefficients, describing friction and diffusion, are given byX 
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and 

respectively. The equilibrium solution of Eq. ( 1 )  is a Maxwellian, 

fM = ( 2 1  n ) " 2 ( ~ o  1 u:]exp(-u2 1 2~1:) . 

Since the particle number density is 

co 

we can readily establish its conservation by taking the i duu' moment of Eq. ( I ) .  
This gives us 0 

where the appropriate boundary conditions on f are that [ ~ f  + D(df ldu)] 
vanishes at u = 0 and -J. 

ca 

Energy conservation can be verified by taking the ( I  / 2)ml  duu4 moment of 
Eq. ( 1 1 ,  i.e., o 

where E [ = ( ~ / ~ ) N T ]  is the energy density. Integrating Eq. (6) by parts, and 
using the fact ( u ~ f )  vanishes at z1=  0 and m, we obtain 

From Eq. (2) and rewriting Eq. (3) as 



LLE REVIEW, Volurne 55 

we then have 

By recognizing that the two double integrals on the right-hand side of this 
equation are identical, we thus have energy conservation. 

The Numerical Scheme 
The conventional approach for solving Eq. ( I  ) is to discretize in time such that 

At = (t"" - t n )  and use 3f 13, = [ f " "  - f t l ) /  At to obtainJ . 

where i = 0. ..., I is an iteration index. At the beginning of each iteration, the 
nonlinear coefficients are then calculated with either , f17s'3i=o = f "  or 

.f n + l , i = o  = 2 f n  - f l ' - I  (i.e., a predictor step). However, as will be shown later, 
such iterative methods can lead to large energy-conservation errors when 
Ar >> T for plasmas far from thermal equilibrium. 

In this article we develop a noniterative, fully implicit method for solving 
Eq. ( 1 )  that conserves energy exactly for arbitrary values of At. The first step 
involves expanding FV) by a truncated Taylor series," 

Substituting this equation hack into Eq. ( l ) ,  we then obtain I 

where 

and 
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Here, we identify terms (a) and (b) as differential and integral operators on 
J ' " + I ,  respectively. They represent the time rate of change of fresulting from the 
distribution of (a) test and (b) field particles at tfl+l. By neglecting the more 
cumbersome term (b), Eq. (1 2)  reduces to Eq. (1 0) with c"+',~ = Cil and 
D ~ i + l , i  = Dlf. However, even though terms (a) and (b) individually conserve 
number density. we will now show that term (b) is essential to ensure overall 
energy conservation. 

rn 

Taking the (1 12)rnJ dzw4 moment of Eq. (12). we find that 
0 

Comparing Eq. (14) with Eq. (6) and noting that ( d ~ ~ d j ' ) "  j'" = 2Fi7 and 
!dun4 F = 0, we are left with 
0 

which can then be expanded (using the techniques described earlier) to 

Once again, terms (a) and (b) correspond to the differential and integral 
operators, as in Eq. (13). These terms cancel each other out and lead to exact 
energy conservation for arbitrary values ofY1 and f'"+'. We do recall. however, 
that number-density conservation does not require the use of term (b).3 

Our remaining task is to difference Eq. (12) in velocity space. We introduce 
f ,  = f ( u j ) .  where the index j = 1, .... Jdenotes a cell center. The cell boundaries 
are defined by u j i l12  = ( u j  + z 1 , + ~ ) / 2 ,  where a I l 2  = 0 and = urnax 
and thecell sires (not necessarily uniform) aregiven by Auuj = ( u j i l  1: - u,-1 1 
and A z ~ ~ + ~  2 = + - ~ 1 , ~ ) .  Equation i 12) now becomes (using the convention 
of summing over repeated indices) 
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where 

The matrix elements, corresponding terms (a) and (b) of Eq. (13) are given, 
respectively, by 

*" = - D:'li! D)l-I I 2  

/ A  ( + + c + , i 2 6 ~ + , , 2  A ~ , + 1 1 2  Az'/- , i?,  
- ( 1  - % - I / ? )  . for;=k 

- -- DL112 + ~ : ' + , , ~ ( l -  6 ,+l i2)  , for j + 1 = k 
A v , , , , ,  

D; I , >  - -- - - C)1-1,?6,-1:2 , for; - I = k 
A u / - , / ?  

= 0 ,  f o r j - 1 > k  a n d j + l < k .  

and 

B;~  = AU;ZI~.~;+~ +(y;+l12 -Y;- l12)pi~ ,  . for; = k 

= A Z I L V : [ ~ ~ + I I ~  -.f;-112 +(Y;+I I?  - Y ; - I I ~ ) ~ ~ + I I ~ u ~ + I ~ ? ~ u ~ + I I ~ ]  

+ ~ k ( y + l 1 2  - Y ? - I / ~ ) S ~ ~  f o r ~ > k .  

with 

j - I  f!' - ,f! 
2  S, = C bulvl  , . / + I  I f 2  = ---, and 

/ = I  " j + ~  / : A u j + ~  I Z  

II. I = ~ , + 1 / 2 A z ~ ; + , / 2 ~ , + , 1 2  + ~ , - l f 2 ~ ~ , - l / 2 ( ~ - ~ , - , / 2 ) ~  
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Following the Chang-Cooper method, we use 

where 

and M.,+~ = Ail,+ /2C,+1 / / DJ+l 2.This type of weighting has been designed 
to preserve positivity and provide the correct equilibrium solution for,f3 

In order to comply with the energy-conservation relations discussed in this 
article, the collisional terms are calculated from Eqs. (2) and (8) as  follow^:^.^ 

and 

The appropriate boundary conditions give rise to 

Y J + I I Z  = 0  f J + 1  = 0 ,  and ~ J + I I ~  = 0  

Test Problem 
We consider the thermalization of an approximately monoenergetic distribution 

of particles through small-angle Coulomb scattering. Figure 55.1 shows the 
typical evolution of such a distribution, obtained by solving Eq. (17). As 
expected from previous calculations (e.g., Ref. 5), the particles attain close to a 
Maxwellian distribution fM of density No and temperature To in about five 
collision times. 
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Fig. 55.1 

Plot of the distribution function,f[normalized to 

For the case shown in Fig. 55.1, where the time step was taken lo beO.l r ,  both 
iterative and implicit approaches for solving the FP equation are found to be 
sufficiently accurate. So the question is-What happens to the solution when 
At >> T*? 

Using the new implicit-conservative scheme we find that the distribution 
function evolves to the correct Maxwcllian steady-state solution in about three 
tinie steps, while maintaining constant energy. With the iterative approach, 
however, the lack of exact energy conservation leads to Maxwellian distribution 
functions of different temperatures T. To characterize these results, we calculate 
the fractional temperature difference l(T = T ~ )  1 701 - l6T 1 as a function 
of A t l ~ .  These are plotted in Fig. 55.2, assuming either f n f ' 3 i = 0  = f "  or 
,f n+'3i=0 = 2 f "  - f "-' (,predictor step). As observed, in the absence of further 
iterations and for At < 2 0 ~ ,  considerable improvement can be achieved with 
the predictor step. For At > 20r, however, neither approach is satisfaclory, 
and the predictor method leads to larger errors. In fact, for At >> LOOT, the 
predictor method has been found to produce negative distribution functions and 
numerical instabilities. 

As expected, iterations are found to improve the accuracy of the solutions (see 
Fig. 55.2). These improvements, howevcr, become less pronounced as AtlT 
increases, and the energy errors still remain above 20% for At > 1 00r, even after 
ten iterations. 

The results presented in Figs. 55.1 and 55.2 are not too sensitive to the initial 
spread in energy distribution about the most likely energy, though the closer the 
distribution is to equilibrium, the smaller the energy errors become. 
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1 (da\heJ c'llr\c\l. and ~ i r h  t i ther no itcrarion 

( /  = 0)  or ten ittration\ I/ = 10) 

Simulations of Laser-Produced Plasmas 
The ablation of a target by a high-power laser, as envisaged in a laser-fusion 

scenario, has been routinely simulated using the SPARK FP code.',2 The code 
assumes fluid ions and solves for the electron-distribution function, including 
effects such as transport in configuration space, laser heating, and electron 
thermalization in velocity space. Since the last process is modeled by the same 
equation considered in this article. its method of solution can have an important 
impact on the computational efficiency of the code. 

As discussed in the previous section, if the time step used in the code is much 
greater than z (where t = z,, is now the thermal collision time between electrons), 
and the electron-distribution function is far from equilibrium, one might expect 
significant energy errors when using the standard iterative scheme for the 
electron-electron collision operator. To demonstrate this effect we simulate the 
evolution of a laser-produced plasma using SPARK. 

We first consider an idealized planar plasma of the type initially studied by 
~ 1 b r i t t o n . l ~  The ions are assumed cold, immobile, and fully ionized, with an 
effective ionization number of Z = 10. Figure 55.3 shows the corresponding 
electron-number-density profile as a function of space z .  A 1.06-ym laser 
is incident from the right, with its energy being deposited via inverse- 
bremsstrahlung (up to the critical density. No = N, = lo2' ern-') at a constant 
intensity of 1 0 ' ~  w/cm2 over a period of 100 ps. Unlike Albritton, however, we 
assume a much lower initial electron temperature of 1 eV. 

SPARK is run with 40 zones in z and 40 feathered zones in u, such that 
A?;+, / Au,; = I .I I and u,,, = 200 0,. Using the implicit-conservative scheme 
we find that a constant time step of 0.1 ps provides a converged solution for the 
thermal heat front (shown in Fig. 55.3). The overall CPU time for this simulation 
is 74 son a Cray Y-MP. To highlight the nonlocal nature of the electron transport, 
Fig. 55.3 also plots the temperature profile (dashed curve) based on a fluid 
description of the energy equation, using the Spitzer-Harm heat flow formula. ' I 
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This shows certain well-known features of nonlocal transport,lO.l such as 
inhibition of the main heat front and preheat due to long-mean-free-path 
electrons coming from the corona. 

Fig. 55.3 
Plots of electron number density N(in cm-3) and 
temperature T(in eV), as functions of: (in pm). 
Solid curves are obtained using the implicit- 
conservative scheme on SPARK, with (a) At = 1 
ps and (b) At = 0.1 ps, and dashed curves are 

Laser 
-an/ 

CPU time: 
74 s 

The above simulations have been repeated using the conventional iterative 
method for theelectron-electron collision operator. Figure 55.4plots the resulting 
temperature profiles forAt= 1 ,  lo-', and 10-3 ps, assuming ,f"+I.i=O = f." 
(followed by one iteration). The corresponding CPU times are 1.3, 13, 130, and 
1300 s. A comparison between Figs. 55.3 and 55.4 shows the slow convergence 
of the iterative scheme. This is specially true at high densities, where the preheat 
is occurring. Also. even though curved (in Fig. 55.4) is not yet fully converged. 
it has already taken 18 times more computational effort than the corresponding 

Fig. 55.4 I , , , ,  

Plots of electron temperature T (in eV) as a 
function of I (in pm). Results are based on the 
iterative scheme with one iteration and (a) Ar = 
1 ps, (b) Ar = 10-1 ps, (c) At = ps, and (d) 
Ar = 10-3 ps (same conditions as in Fig. 55.3). 

1 30 
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Fig. 55.5 

Plots o f f  (in arbitrary units) as a function of 
electron kinetic energy ( 112)mv2(in k e ~ ) . ~ u r v e s  
correspond to positions A and B in Fig. 55.3. 

To understand the poor performance of the iterative scheme we must first 
realize that the electron-distribution function is far from a Maxwellian. This is 
shown in Fig. 55.5, which plots,fas afunction of electron kinetic energy (1/2)mv2 
(in keV), corresponding to positions (A) and (B) in Fig. 55.3. Here we note the 
typical~odouble-~axwellian nature of the electron distribution in the overdense 
region (A). where the "hot" tail shares the same temperature as the tail of the 
distribution at the critical density (B). Another important clue to the poor 
performance of the iterative scheme lies in the values of tee, which are plotted 
in Fig. 55.6 (for the same conditions as in Fig. 55.3). Together with the discussion 
in the "test problem" section, this figure shows why the convergence of 
the iterative scheme is so slow at high densities and low temperatures. Indeed, 
even for At = ps, the high-density unheated plasma has a characteristic 
tee - 0.0 1 At. 

To test the implicit-conservative scheme under less-idealized plasma 
conditions, we now consider the recent Rayleigh-Taylor experiments performed 
at Lawrence Livermore National Laboratories using the NOVA laser.12 We 
attempt to model their plasma conditions by simulating the evolution of a CH 
foil, illuminated by 530-nm laser light with I -ns linear rise time followed by a 
2-11s flat section, at an intensity of 5 x l0I3 w/cm2. 

Our initial conditions correspond to a fully ionized, 18-mm CH plasma at 
a temperature of 0.5 eV and an electron number density of 3.38 x ~ m - ~ .  
The code is run in one-dimensional planar geometry on a Lagrangian mesh, 
assuming cold fluid ions. The configuration space mesh uses 50 zones, and the 
velocity mesh uses 35 feathered zones (where the mesh size increases at a 
constant ratio, Avj+l / Avj = 1.1 1) and z7,,, = 280v,. 
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Fig. 55.6 

Figure 55.7 plots the electron temperature and number density as functions of 
space ; at 3 ns. The implicit-conservative scheme has been uced with aconstant 
time step of 1 ps. The overall computation time of the simulation is 230 CPU sec 
on a Cray Y-MP. I 

In this case, tu obtain a similarly accurate solution. the conventional iterative 
scheme (with one iteration) would require a prohibitively small time step 
of ps. By using the predictor step (followed by one iteration), however, 
it has been possible to successfully reproduce the results in Fig. 55.7 with 
At = 0.01 ps. (Unfortunately, this type of iterative scheme leads to numerical 
instabilities for At > 0.0 1 ps.) This uses a total of 7200 CPU sec of computational 
time. So despite the fact that the implicit-conservative scheme requires three 
times more computational effort per At, the 100-fold increase in At has produced 
a 30-fold enhancement in computational speed. 

It must be realized that many factors can affect the relative efficiency of using 
the implicit-conservative scheme. An obvious one is the value of T,,, as 
demonstrated by the previous numerical simulations: another is the number of 
velocity groups J .  Since the solution of Eq. ( 17) requires inversion of afull matrix 
rather than a tridiagonal matrix [as required by Eq. ( 1  O)], the computational effort 
scales approximately as .I2 instead of J .  This explains the larger computational 
effort (per time step) required by the implicit-conservative scheme. Although 
thiscan eventually limit the size of .I, it is found that in practice one can alleviate 
this problem by judiciously feathering the velocity mesh (as done in the above 
simulations). 
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Conclusions 
In this article an implicit finite-difference scheme has been developed for 

solving the FP equation for like-particle collisions in plasmas. Unlike the 
currently available schemes, it enforces not only number-density conservation, 
but also exact-energy conservation. These properties have been demonstrated 
both analytically and numerically by considering the thermalization of an 
approximately monoenergetic distribution of particles. It is shown that even 
when the numerical integration time step is much larger than the thermal 
collision time, the correct steady-state solution is obtained. By comparison, 
numerical solutions based on conventional iterative approaches can yield 
unacceptably large energy errors. 

The usefulness of the new implicit-conservative scheme has been 
demonstrated by implementing it in the laser-plasma transport code SPARK. 
Apart from improving the reliability of the code, the relaxation in time-step 
constraints has typically allowed for over an order of magnitude reduction in 
computational time. 
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