
LLE REVIEW, Volume 47 

2. L. Spitzer, Physics of Fully Ionized Gases, 2nd Rev. Ed. (Interscience, 
New York, 1962), p. 148. 

3. W. J. Karzas and R. Latter, Astrophys. J. Supp. 6, 167 (1961). 

4. B. L. Henke andR. L. Elgin, Advances in X-Ray Arzalysis 13,1 (1969). 

5. R. Epstein, S. Skupsky, and J. Delettrez, J. Quarzt. Spectrosc. Radiat. 
Transfer 35, 131 (1986). 

6. R. Epstein, Phys. Fluids B 1, 214 (1989). 

l .C Fokker-Planck Simulations of Laser Filamentation 
in Plasmas 

In inertial confinement fusion (ICF), where irradiation uniformity is a crucial 
issue, it is important to understand the process of laser-filamentation insta- 
bility.' The breakup of laser light into filaments occurs as a result of plasma 
density depressions that form localized focusing channels. The density 
depressions may be caused either by ponderomotive forces2 due to laser- 
plasma interactions or by thermal forces3 arising from collisional light 
absorption. The main consequences of the instability are that high-intensity 
laser irradiation in the filaments can generate ablation-pressure 
nonuniformities in ICF targets and give rise to undesirable parametric 
instabilities.' 

There have been extensive theoretical and experimental efforts to under- 
stand and characterize filamentation.'-6 Recently, Young et have 
attempted to generate and identify filaments under controlled experimental 
conditions, in which a fairly homogeneous plasma was irradiated by a 
spatially modulated laser beam. By comparing their observations with 
analytic predictions based on ponderomotive and thermal-filamentation 
growth rates, they concluded that the ponderomotive mechanism was 
responsible for the occurrence of filaments. However, a subsequent im- 
proved theory of filamentation that took into account nonlocal heat transport 
effects indicated that the thermal rather than the ponderomotive mechanism 
may have been responsible for their experimental  observation^.^ The main 
purpose of this article is to confirm this hypothesis by simulating as closely 
as possible the reported experimental conditions using the two-dimensional 
(2-D) Fokker-Planck (FP) code  SPARK.^ Also, by doing parallel simula- 
tions invoking classical transport [with ~ ~ i t z e r - ~ i i r m ~  (SH) heat flow], 
general contributions from kinetic effects are demonstrated. 

In contrast to the analytic theories that assume linear departure from 
energy and momentum balance to calculate exponential growth rates, the 
code models the full hydrodynamic response of the ions (assumed cold), 
the electron heat flow using the FP equation, and the paraxial wave equation 
for the laser light. The following sections describe the modeling in more 
detail, Young et al.'s experimental conditions and results, the simulation 
results, and finally the discussion and conclusions. 
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Description of the Model 
In this article the plasma is assumed to be in planar x-z geometry, where 

z is the direction of laser propagation. The present version of the 2-D Eulerian 
code SPARK is comprised of three main parts: (A) a laser-propagation 
routine based on the paraxial wave equation; (B) an electron-transport 
routine that solves the FP equation in the center-of-mass frame of the ions; 
and (C) an ion-transport routine that advances ion density and momentum 
under the influence of the electron and ponderomotive pressures. These are 
described briefly as follows. 

(A) Laser Propagation 
Using the paraxial approximation, the time-averaged electric fieldEL(x,z) 

of a laser is defined by3 

where k(z) = (wlc) [ l - m ~ ( ~ , z ) / & ] ~ ' ~ , w ~  is the plasma frequency, and m is 
the angular frequency of the laser. Substituting Eq. (1) for the electric field 
into Maxwell's equations, we obtain the following result 

where Kih is the attenuation coefficient for collisional absorption. This so- 
called paraxial wave equation assumes that the light wave propagates 
infinitely fast across the plasma and that lk(z)-'(aFlaz)l<< IFI. Its numerical 
solution is accomplished via standard finite difference techniques (see 
Ref. 6). 

(B) Electron Transport 
The electron-transport model is based on the diffusive approximation to 

the FPequation, without magnetic fields. Such a model has been successfully 
used to model 2-D electron transport in laser-produced plasmas.7 Although 
the equations and methods of solution have been described in detail in 
Ref. 7. a few modifications have been introduced here. By defining the 
electron-distribution function in the frame of the moving ions (with velocity 
u;), the equations describing the evolution of the isotropic and anisotropic 
part of the distribution become 

fl = - Z ( U V ~ ,  - a& / dv) . (3b) 
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where a = IeIElm , Y = 4 n ( ~ ~ / m ) ~ l n ~ ,  e is the electric charge, m is the electron 
mass, InA is the Coulomb logarithm, C and D are the Rosenbluth potentials 
(defined in Ref. 9), V ,  is the electronoscillatory velocity in the laser field, and 
Z* = (z2)/(2) is the effective ionization number (where() denotes an average 
over the ion species). Here the 9oU angular scattering collision time is given 
by T = v3/[$z*ny], where n = (Z)n, is the electron number density (assuming 
quasi-neutrality) and $ = (~*+4.2)/(2*+0.24). The inclusion of a factor $ in 
the definition of z is an attempt at correcting for the high-Z (or Lorentz) 
approximation in Eq. (3b). Such a correction is found to give the exact heat 
flow coefficient when f, is Maxwellian. 

The second and third terms on the left-hand side of Eq. (3a) represent the 
hydrodynamic contribution to the transport. For computational purposes it 
has been found convenient to rewrite them in the form 

such that the first term is now expressed in conservative form. The reason for 
using a logarithmic derivative in the second term is that it can be approxi- 
mated as i3 Jnfo,;= [In( fo~,+Ilfo,;-1)]/2A~i, where Av, is the magnitude of the 
velocity mesh at thejth cell. This formulation ensures zero truncation error 
for a Maxwellian f ,  and minimizes departures from quasi-neutrality. 

The solution forf, is accomplished by substituting Eq. (3b) into (3a) and 
differencing the result in an orthogonal mesh (xl,zk,~,), where the subscripts 
denote cell centers. The left-hand side of Eq. (3a) is advanced explicitly in 
time using a standard donor-cell scheme.'' The remaining part of the 
equation is solved by an "alternating-direction-implicir" method, in 
the manner described in Ref. 7. Quasi-neutrality is enforced by requiring zero 
current j = -(4ne/3)Jdu v3 f l  and calculating the electric field accordingly. 

(C) Ion Transport 
Conservation of density and momentum for cold ions is given by 

where mi is the ion mass, p = (4n/3)Jdv v4 f ,  is the electron pressure, 

is the pondel-omotive force, and where vg = k(z)12/a is the group velocity of 
the light wave. Equations (4) and ( 5 )  are solved using donor-cell differencing I 
(without artificial viscosity). 
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At each time step, SPARK solves not only Eqs. (1) to (5) but also an 
equivalent set of equations where Eq. (3) becomes the energy conservation 
relation under the assumption of classical heat t r a n ~ p o r t , ~  i.e., 
q s ~  = -K~"VT, with KSH being the SH heat-flow coefficient. In order to 
ensure a meaningful comparison between classical and kinetic transport 
results. the code is regularly tested in the collisional limit where both are 
expected to converge. 

Young et aL's Experimental Conditions and Results 
In Young et al.'s4 experiment a CH-foil target was irradiated by laser light 

to form a fairly homogeneous underdense plasma. The plasma was subse- 
quently irradiated by a 1.06-pm interaction beam with a 100-ps FWHM 
pulse. This beam was spatially modulated in the transverse x direction, such 
that 61/1, = 0.81, where I, is the peak laser intensity and 61 = (1,-I,,,,). A 
separate 0.35-pm beam with the same pulse length was synchronized with 
the interaction beam to probe for the formation of filaments. The refraction 
of the probe light through the plasma gave a measure of its density modula- 
tion 6n/n,, which in turn provided an indirect measure of the level of 
filamentation. 

It was reported that, for a transverse spatial modulation hL = 42 pm 
and I, = 4.2 x 1013 w/cm2, laser filamentation was observed with an 
estimated 6n/n, - 10%. No filamentation was observed for a 135-pm 
wavelength with I,= 4.2 x 1013 w/cm2, nor for a 42-ym wavelength with 
I ,=  2.8 x 1 0 ' ~  w/cm2. 

The plasma background conditions at the time of the interaction beam 
have been simulated by LASNEX, the results of which were presented in 
Young etal.'s paper.%or ourpurpose the plasma is assumed to have a spatial 
extent of 400 ym, with a parabolic density profile in the z direction approxi- 
mated by 

such that the density ranges from 0.1 n,. to 0.25 n,., where n,. is the critical 
density. Since hL is much smaller than the density scale length in the 
transverse direction, the plasma is assumed to be uniform in that direction. 
A temperature of 0.8 keV was taken throughout the plasma. 

The interaction beam is modeled by I(t) = I,(t)(l + ~ c o s k ~ x ) ,  where 
k I = 27c/hl and E = 0.68. Its temporal evolution is Gaussian with a 100-ps 
FWHM. 

Simulation Results 
Simulation results are presented here with the initial background condi- 

tions described in the previous section and three types of interaction beams, 
with varying spatial modulation wavelengths and peak intensities. In all 
cases the plasma is defined in a uniform 20 x 20 Eulerian grid in the .u-z plane, 
with 18 velocity groupsof s i z e ~ u = 0 . 5 ( ~ / n i ) ~ ' ~  (where T=0.8 keV). In view 



LLE REVIEW. Volume 47 

Fig. 47.16 
Surface plot of normalized initial laser inten- 
sity I I I ,  on the .r-z plane. 

of the symmetry of the problem, the simulation is restricted to 0 I s  I h1/2, 
with reflective boundary conditions imposed atx= 0 and h112. Zero heat flow 
is likewise imposed at the z = 0 and 400-pm boundaries, though free plasma 
flow is allowed there. 

All simulations progress from -100 ps to 100 ps with respect to the peak 
of the interaction pulse. The time step and grid size were small enough to 
ensure converging solutions and a maximum fractional deviation from 
quasi-neutrality of less than 1 %. 

(A) I ,  = 4.2 x 1013 w1cm2 and h1 = 42 pm 
Figure 47.16 shows a surface plot of the normalized laser intensity 111, in 

thex-z plane at t = -100 ps. The plot emphasizes the initial spatial modulation 
of the interaction beam and shows that the beam is slightly attenuated as it 
propagates through the plasma. 

At the peak of the pulse there is significant amplification of the laser 
intensity due to self-focusing, as shown in Fig. 47.17(a). By comparison, the 
case with SH heat flow, depicted in Fig. 47.17(b), shows very little self- 
focusing. This gives a clear indication that nonlocal (or kinetic) heat 
transport plays a significant role in the filamentation process. Indeed, if one 
were to repeat the same simulation with the ponderomotive force artificially 
suppressed, the peak intensity in Fig. 47.17(a) would only go down by 30%, 
whereas in the classical transport case the amplification would disappear 
completely. The dominance of kinetic thermal filamentation can be directly 
attributed to the reduction in the effective heat-flow coefficient, as discussed 
in Ref. 5. For the present case, the ratio of the FP heat flow q~~ to the local 
q s ~  ranges from 0.1 to 0.003 across the mesh, despite the fact that the 
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I P98 1 (a) Fokker-Planck (b) Spitzer-Harm 

Pig. 47.17 
Surface plots of [ / I ,  on the A-z planc at t = 0 ps (i.e., at the peak of the laser pulse) tor (a) Fokker-Planck 
transport and (b) Spitzer-Harm tramport. 

magnitude of q~~ never rises above 0.006 qf,,  where r/f= n n t ( ~ l n 2 ) ~ ' ~  is the 
so-called free-~treaming limit. 

The main diagnostic for filamentation in Young et al.'s cxperiment4 
measures density modulation, rather than intensity amplification. Therefore, 
6nln, = (n - n,)/n, [where n,(z) is the mean density averaged along x] is 
plotted in Figs. 47.18(a) and 47.18(b) for nonlocal and classical transport. 
respectively. Although 6n/n, in Fig. 47.18(a) is somewhat smaller than the 
10% measured experimentally, this discrepancy could be attributed to 
the uncertainties in the experimental measurement and in the quoted plasma 
background conditions. However, it is certainly clear that the ponderomotive 
force alone, which is the dominant driving mechanism in Fig. 47.18(b), 
yields Snln, values that are more than one order of magnitude below 10%. 

Another important factor in the interpretation of these simulations is the 
temporal evolution of the plasma. This is described in Fig. 47.19, which plots 
the om, of n (i.e., the maximum rms deviation of n across x, normalized to 
nu). for FP transport (solid curve) and SH transport (dashed curve) as a 
function of time. It is obvious from the transient nature of the curves that 
steady state (or pressure balance) is never achieved in the simulation. This 
fact could have been predicted by estimating the hydrodynamic responce 
time of the plasma as zH = liljc., where c, is the isothermal sound speed. For 
our conditions ZH - 200 ps, which is comparable to the FWHM of the laser. 
From the point of view of Young er al.'s thc probe beam was 
able to detect thc density modulations since it was synchronized with the 
interaction beam (with the same 100-ps FWHM). 
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P986 
(a) Fokker-Planck (b) Spitzer-HLm 

Fig. 47.18 
Surface plots of normalized density modulation 6r1lr1, on thc x-2 plane at r = 0 ps for (a) Fokker-Planck 
transport and (b) Spitzer-Harm transport. Note that 6n/n, changes sign from < 0 at x = 0 (representing a 
depression) to > 0 at s = 71 pm. 

Fig. 47.19 
Plot of rms density modulation om, as a 
function of time, for case (A) I ,  = 4.2 x 10'' 
w/cm2 and kL = 42 ym. Solid curve corre- 
sponds to Fokker-Planck simulation, 
dash-dotted curve to Fokker-Planck simula- 
tion withoutponderomotive force, and dashed 
curves to Spitzcr-HBrm simulation (with and 
without a flux limiter). 

T o  re-emphasize the dominance of the kinetic thermal-filamentation 
instability over the ponderomotive one, Fig. 47.19 also plots the FP simula- 
tion results without the ponderomotive force (dash-dotted curve). 
The corresponding curve with SH heat flow is not displayed since its 
o,, << 
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In an attempt to reproduce the FP results, the SH simulation was 
repeated by limiting the heat flux with a harmonic flux limiter, i.e.. 
qsH/(l + 1 ~ ~ ~ i f 4 1 1 ) . ~ ~  It was found that f = 0.0015 gave the best fit, though 
the agreement was qualitative at best (see dashed curve identified by 
f = 0.0015 in Fig. 47.19). Another problem with the flux limiter is that the 
appropriate f would have to depend on hl/h, because the amount of heat- 
flux inhibition due to nonlocal transport effects is dependent on hl/he,where 
he = ~~ / [47cne~(@Z*)"~ ln~]  is the effective stopping length of an electron.12 

(B) I ,  = 2.8 x 1013 w/cm2 and hl = 42 pm 
These parameters for the interaction beam give rise toqualitatively similar 

results to case (A). As expected, the reduction in peak laser intensity has the 
effect of reducing the degree of self-focusing and the amount of density 
modulation. The temporal response of the latter is plotted in Fig. 47.20, 
which shows approximately a 25% reduction in the maximum oms from that 
in Fig. 47.19. It is, therefore, surprising that in this case no filamentation was 
observed experimentally. One could speculate that this present case happens 
to fall just below the detection threshold of the experiment. 

(C) I ,  = 4.2 x 1013 w/cm2 and hl = 135 pm 
In this case, no filaments were detected experimentally.4   he results of the 

simulation, plotted as density oms as afunction of time in Fig. 47.2 1, confirm 
these findings. Since the hydro response time (zH - 600 ps) is longer for this 
case than for cases (A) and (B). the density-modulation level is too low at the 
peak of the probe beam to be measured. The om, eventually reaches 
at t = 100ps; however, by then the probe beam is too weak to detect it. 
Therefore, the reduction in the level of self-focusing has less to do with the 
spatial growth rate of the instability and more to do with the hydrodynamic 
response of the plasma. 

Discussion and Conclusions 
The results presented in this article are in qualitative agreement with the 

analytic kinetic theory of filamentation derived in Ref. 5, which predicted 
larger growth rates for the thermal rather than ponderomotive filamentation. 
However, quantitative comparisons have not been possible since that theory 
calculates linear spatial growth rates for a given transverse spatial modula- 
tion kl, assuming momentum and energy balance. Despite the fact that 
16nlnol and 16T/ToI << 1, the FP simulations yield 6l/l0 >> 1 and a correspond- 
ing wide spectrum in kl, in accordance with the narrowing of the filaments 
as they propagate along z. Moreover, steady-state conditions are never 
achieved. In fact, by observing the time behavior of the density in Fig. 47.19 
one can see the onset of spatial oscillations (of period zH) for 12 100 ps. The 
total amount of damping may, however, be underestimated since SPARK 
does not include Landau damping.13 

Although we have only considered 2-D filamentation, in some circum- 
stances three-dimensional effects could become important and give rise to 
considerably larger intensity amplifications.14 This is specially true if "hot- 
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Fig. 47.20 
Plot of rms density modulation oms as a 
function of time, for case (B) 1, = 2.8 x 1013 
w/cm2 and h1 = 42 pm. Solid curve corre- 
sponds to Fokker-Planck simulation, and 
dashed curve to Spitzer-Harm simulation. 

Fig. 47.21 
Plot of rms density modulation oms as a 
function of time, for case (C) 1, = 4.2 x 1013 
w/cm2 and h1 = 135 pm. Solid curve corre- 
sponds to Fokker-Planck simulation, and 
dashed curve to Spitzer-Harm simulation. 

spots" are present in the laser-intensity profile, since these may give rise to 
cylindrical instead of planar filaments. However, the conclusions regarding 
the comparison between thermal and ponderomotive filamentation are likely 
to remain unchanged. 

The role of magnetic fields in the presence of nonuniform laser illumina- 
tion has been previously studied in the context of 2-D classical heat flow and 
found to be negligible.15 The effects of magnetic fields on nonlocal transport 
are expected to be stronger,I6 though an accurate estimation of their 
importance is outside the scope of this work. 

In conclusion, the dominance of kinetic thermal filamentation over 
ponderomotive filamentation, predicted by analytic theory, has been con- 
firmed by means of the 2-D FP code SPARK. Specific simulations using the 
reported conditions of Young et al.'s experiment show good agreement with 
their results. 
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