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l .B Transverse Instabilities of Counterpropagating 
Light Waves 

Instabilities of Counterpropagating Waves in ICF 
Direct-drive laser fusion requires high-gain fusion pellets to overcome the 
inherent losses associated with initiating the inertial fusion process. Conver- 
sion of laser light into energy used to drive the compression of the fuel pellet 
begins in the corona where the intense laser field must penetrate a plasma and 
deposit its energy into the pellet material. Two critical aspects of this 
deposition process are (1) the laser absorption efficiency and (2) the implo- 
sion symmetry. ' t 2  

In the direct-drive fusion process both absorption efficiency and implo- 
sion symmetry can be adversely affected by parametric and focusing 
instabilities that occur during the interaction of the laser light with the coronal 
plasma. Focusing instabilities can degrade the uniformity of the laser light as 
it passes through the corona by enhancing modulations of the laser profile 
and distributing the incident laser light into filaments. This nonuniform 
deposition of laser energy can seed hydrodynamic instabilities that further 
degrade the laser-to-fuel coupling efficiency and inhibit the fusion gain. 



LLE REVIEW, Volume 46 

Parametric instabilities can degrade the absorption of laser light by scattering 
it away from the pellet. More importantly, they are one source of hot 
electrons that can divert energy from the ablation process and preheat the 
fuel. 

In this article, we discuss parametric and focusing instabilities arising 
because of the coupling of laser light to ion r n o d e ~ . ~ ? ~  Though recent studies 
have shown that shorter-wavelength lasers5 significantly reduce the effect of 
these instabilities, there is still much to be learned about their role in reactor- 
size plasmas. In addition to being important in ICF, these instabilities play 
a fundamental role in the interaction of laser light with other nonlinear optical 
materials and are of general interest. 

Parametric and focusing instabilities need not occur in isolation. In fact, 
Brillouin scattering and filamentation are known to be closely related,3'4 and 
recent studies have shown a correlation between the generation of Brillouin- 
scattered light and~aman-scattered light.&' This article contains adescription 
of a preliminary study of the transverse modulational instability in a plasma 
with adiabatic ion response when feedback from a counterpropagating wave 
is present. Several researchers have studied the effects of back-scattered or 
back-reflected light on parametric instabilities in laser-produced 

The backward propagating light may arise because of reflection 
of the incident laser from the critical surface, parametric back-scattering, or 
shinethrough, as shown in Fig. 46.2. In related applications, such as optical 
phase conjugation and x-ray lasers, the counterpropagating laser field is 
externally applied. 

Incident 

Distance, x 

Fig. 46.2 
Feedback from light propagating back towards the incident laser can arise from 
several sources. 
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Studies on the effect of counterpropagating laser fields in plasmas are 
closely related to basic nonlinear optics research in which the effect of a 
counterpropagating laser beam on parametric scattering and four-wave 
mixing has been investigated.12313 In addition, researchers in nonlinear 
optics have investigated the effect of a counterpropagating laser beam on 
transverse modulational instabilities in nonresonant media. 14-20 This work 
on nonresonant transverse modulational instabilities has been extended to 
include the resonant effects of the ion-acoustic response of a plasma. Though 
the model discussed here is simplified with respect to laser-plasma interac- 
tions, it is expected to be of direct relevance to the study of basic physics in, 
and applications of, nonlinear optical systems. In addition, this work provides 
a solid starting point for further laser-plasma interaction research. 

Four-Sideband Instabilities 
In this section the dominant interactions in the counterpropagating-wave 

system are introduced. A pair of intense, counterpropagating light waves, of 
frequency @,and wave vector kk,, irradiate opposite ends of a homogeneous 
plasma of length L. Let F,  be the amplitude of the intense pump wave 
injected at the left end of the plasma, while B, is the amplitude injected from 
the right end of the plasma. At high intensity, the ions respond to the presence 
of the light fields. Thus, since the index of refraction of the plasma is a 
function of the plasma density, it responds to the intensity of the fields on the 
ion-acoustic time scale. 

Small-amplitude sidebands of the intense counterpropagating light waves 
can arise in the system as a result of noise within the plasma or by injection 
from an external source. Consider a single, small-amplitude, anti-Stokes 
sideband F,, which has frequency o, + w and wave vector k, + k as shown 
in Fig. 46.3. This sideband can interfere with the pump fields, creating 
periodic variations in the intensity that drive a grating in the index of 
refraction. In a plasma, these gratings can be driven at the frequency and 
wave number of the ion-acoustic wave. Since the ion-acoustic wave is a 

Fig. 46.3 natural mode of the plasma, the gratings can be driven resonantly. Once a 

The wave-vector matching diagram for the grating is formed, the pump fields can scatter from it to augment the 
four-sideband interaction. sidebands. 
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One distinct set of sidebands grows more strongly than the others. The 
phases of these modes are tuned in such a way that their linear and nonlinear 
phase shifts are optimally matched inside the medium. As a result, these 
optimally phase-matchedmodes exchange energy with the pump fields more 
efficiently than the unmatched modes can. In many instances these phase- 
matched sidebands are unstable. The counterpropagating-wave interaction 
can support two types of instabilities. At moderate intensity sidebands can 
grow as they propagate and are said to be convectively unstable. At higher 
intensity unstable sidebands can grow exponentially in time at each point in 
the plasma. This latter form of instability is called an absolute instability and 
grows in the frame of the medium without convecting away. 

In the counterpropagating-wave system the two pump waves interact 
most strongly with a set of four sidebands that lie in a plane that includes the 
pump axis. Thus, the F+ sideband couples most strongly to the three other 
sidebands shown in Fig. 46.3. It couples with the Stokes-shifted sideband F- 
as a result of a forward four-wave mixing process. It couples with the anti- 
Stokes sideband B+ as a result of Bragg reflection, and it couples with the 
Stokes-shifted sideband B- as a result of a backward four-wave mixing 
process. In this article the linear stability of the four-sideband interaction is 
of primary interest, so let IF,!, IB,I D IF?I , IB,I. This system is expected to be 
coupled most strongly when the sidebands are polarized parallel to one 
another and to the pump waves, so let each wave be linearly polarized 
parallel to each of the other waves. 

Growth of the four sidebands can occur as a result of several different 
fundamental interactions. The pure four-sideband interaction results from 
the concurrent interaction of all four sidebands with the pumps and occurs 
when the two oppositely propagating pump fields and the four sidebands are 
all simultaneously phase matched. This interaction is a true four-sideband 
resonance. As this four-sideband resonance is detuned, four two-sideband 
interactions are recovered. 

The two-sideband forward four-wave mixing process occurs when a 
single pump field couples to a Stokes and an anti-Stokes sideband. Both 
sidebands propagate in the same direction as the pump field, but each 
sideband has a small perpendicular wave-number component. Thus, the F+ 
sideband couples with the pump F ,  to drive a grating at (w,kL). The F ,  pump 
then scatters off of this grating to create the F- sideband as shown in Fig. 
46.4(a). Note that in general the wave-vector shift of the sideband need not 
be small and perpendicular with respect to the pump wave vectors. However, 
since the most important near-axis scattering processes obey this restriction, 
the more general cases are neglected for the purposes of this article. 

Taken together, this pair of sidebands is equivalent to a transverse spatial 
modulation of the light-wave intensity profile. Since the index of refraction 
increases with increased intensity, a positive feedback loop is created 
between the field intensity and the medium. As a result, these transverse 
modulations grow as the interaction proceeds. This near-forward scattering 



Fig. 46.4 
Each two-sideband interaction is shown. (a) 
Forward four-wave mixing from the short 
wave-number grating, (b) backward four- 
wave mixing, (c) backward four-wave mixing 
from the static 2k0 grating, (d) backward phase 
conjugation from the short-wavelength grat- 
ing, (e) backward phase conjugation from the 
long-wavelength grating, and(f) forward four- 
wave mixing from the large wave-number 
grating. 

instability is the transverse modulational instability, and is associated with 
filamentation and self-focusing in its fully nonlinear manifestation. The 
transverse modulational instability has a dominant band of unstable trans- 
verse perturbation wave numbers. As a result, the transverse spatial Fourier 
spectrum of the scattered light will contain sidebands centered on the optimal 
transverse perturbation wave number or equivalently at the optimal cone 
angle. These sidebands are a signature of the instability. Thus, the transverse 
modulational instability can be thought of as self-induced diffraction. Since 
this interactionis invariant torotations about the collinearpumpaxis, aprobe 
sideband injected at any point on the circle determined by the cone angle will 
result in the appearance of a signal sideband located exactly opposite the 
probe on the same circle. When this convective instability is seeded by noise, 
all orientations of the sidebands are seeded equally and conical emission 
occurs. 

Two different two-sideband backward four-wave mixing processes can 
also occur. Phase conjugate backward four-wave mixing occurs when a pair 
of oppositely propagating pump fields couple to a Stokes and anti-Stokes 
sideband that propagate exactly opposite to each other as shown in Figs. 
46.4(b) and 46.4(c). This phase-conjugate coupling has been studied ex- 
tensively in the past. Recall that as the intensity of the pump fields is 
increased, the phase-conjugate interaction becomes absolutely unstable. A 
less important backward four-wave mixing process occurs when a pair of 
oppositely propagating pump fields couple to apair of oppositely propagating 
Stokes or anti-Stokes sidebands as shown in Figs. 46.4(d) and 46.4(e). This 
process corresponds to Bragg reflection. 
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Finally, a Stokes or anti-Stokes sideband can couple to the oppositely 
propagating pump to drive a short-wavelength grating as shown in Fig. 
46.4(f). The same pump that drives the grating can scatter from the grating 
to enhance the sideband with which it is coupled. Note that either the Stokes 
or anti-Stokes sideband can couple with the oppositely propagating pump 
field. This interaction is stimulated Brillouin scattering and requires the ion- 
acoustic grating to be driven resonantly. In a plasma each of the two sideband 
interactions is enhanced near the ion-acoustic resonance. Resonantly enhanced 
four-wave mixing and phase conjugation in plasmas is of great current 
intere~t .~ '  In addition, some researchers have begun to investigate resonant 

13 
self-focusing in plasmas."' 

Origin of the Four-Sideband Equations 
In this section the origin of the governing equations for the four-sideband 

interaction is discussed. A model describing the coupling of the transverse 
electromagnetic fields of two light waves propagating in a quasi-neutral 
plasma can be developed with Maxwell's equations when they are coupled 
to the two-fluid equations of motion for the plasma. The fluid equations lake 
the form 

a,n, +V*(n,V,) = 0 ,  

where the subscript s denotes the particle species (electron or ion). V, is the 
velocity field of one plasma species, P, is the pressure, and q, is the particle 
charge. The charge and current densities that drive Maxwell's equations are 

P = Cnsqs7  J = ~ n , q , ~ , ,  
S S 

respectively. In equilibrium, n,(o) = Zn,(o) = no, where Z is the ionization 
number and V,(o) = V,(o) = 0. It can be seen from the momentum equation 
that the first-order electron motion is in the direction of the applied electric 
field. Thus 

VL = eAl 1 m,c, 

where Al is the transverse component of the vector potential. Assuming that 
the low-frequency plasma evolution is quasi-neutral, then n,(')= ~ n , ( ' ) ,  
and the following set of equations governing the evolution of VL and 
(n) = n,(')ln, arlses from the root equations 

[a,+oj - c ' ~ 2  ]v, = - o: ( n ) ~ ,  

2 2  2 [a, - 2 I ~ ~ , - c : v ~ ] ( ~ z )  = V (vL)/2c"m,rn, , 

where ( ) denotes an average over the high-frequency components, 
r: = Z ~, (O) / rn ,  is the ion-sound speed, and T,(') is the equilibrium electron 
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temperature. The first equation is the analog of Maxwell's wave equation for 
the electric field driven by the time derivative of the material polarization. 
The secondequation is the sound-wave equation driven by the low-frequency 
variations in light pressure. 

The dependent variable VIvaries on the fast time scale of the electromag- 
netic fields and on the slow time scale of the ions. This variable represents 
the total field and can be written 

VI = (1 / 2)(F0 +F+ +F-)exp[i(k, ex-mot)] 

where the wave amplitudes vary slowly in space and time with respect to the 
scales ko and mO. Recall that for the linear stability analysis IFol, lBol )) 

IF+I , IB+I, and the intensities of the pump waves are constant. The linearized 
- - 

equations can then be Fourier transformed in the transverse direction and 
Laplace transformed overtime. When the light-wave amplitudes vary slower 
than (n), the plasma reacts to variations in the fields almost instantaneously. 
The sound-wave equation becomes 

where 

L 
and (V I)L contains only linear terms. The line function r ( o ,  k) character- 
izes the ion-acoustic response of the plasma to the ponderomotive force of 
the fields. The Fourier transform over the transverse coordinates is equiva- 
lent to letting the sidebands F+ - and B+ vary such that - 

In the limit IkI/kol << 1, 8 = IkI/kol constitutes the small angle or paraxial 
approximation and restricts this analysis to near-forward and near-backward 
scattering. 

Finally, by keeping only theelectromagnetic modes drivenresonantly, the 
linearized equations governing the interaction of the four sidebands are 
obtained. They take the form 

2 
whereA = (F: F,, B?, B + ) ~  and L ~ ,  = (-mf ivd,- ck I/2k,) aii The coupling 
terms Mi are proportional to r(m,k) and the pump intensities. Each coupling 
term corresponds to one of the refractive-index gratings that mediate the 
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interaction of the sidebands. These gratings have components 
(n)(w, 2k0 HcL), (n)(o, ?kL) and (n)(O, 2ko) along with their complex 
conjugates. Some ofthese gratings are shown in Fig. 46.4. Note that the terms 
o and ki/2k0 act as the linear phase shifts while the Mq correspond to the 
nonlinear phase shifts. 

Convective Gain Spectrum 
The four-sideband equations are a system of four coupled complex linear 

equations. From these equations information about the stability of the four- 
sideband interaction can be obtained. The convective gain spectrum is 
obtained by solving these equations as a two point boundary value problem 
with B+(L) and F-(0) equal to zero and F+(O) set at a finite constant value 6. 
As shown in Fig. 46.5, this process is equivalent to scattering the probe 
sideband F+(O) from the system into the four sidebands. In Figs. 46.6(a)- 
46.6(d) the convective gain of these four sidebands is plotted as a function 
of k?~/2k, and oL/v, where v is the group velocity of the light waves in the 
plasma. In these plots the gain is scaled to the size of the input probe 6 and 
the pump intensity is 0.92 of the minimal absolute threshold intensity where 
IBoI = IFoI. 

Fig. 46.5 In Fig. 46.6(a), the F+(L) sideband is shown. The surface plot illustrates 
A probe sideband seeds the convective gain the gain of the F+ sideband after one pass through the plasma for a range of 
and scatters into four sidebands. input angles and frequencies. Note that gain occurs for this anti-Stokes 

sideband at two negative values of the frequency shift. These frequencies 
correspond to ion-sound-wave frequencies of the gratings. The small fre- 
quency shift corresponds to scattering from the small-k grating and the larger 
frequency shift corresponds to scattering from the large-k grating. Their 
frequency shifts are given by the linear dispersion relation w2 = 42, of the 
ion-acoustic waves that form the gratings. At the large upshifted frequency, 
energy is extracted from the F+ sideband. This is due to the resonantly 
enhanced interaction of the F+ sideband with the B+ sideband through Bragg 
reflection. 

In Fig. 46.6(b) the spectral gain of the B+ sideband is shown. The shallow 
periodic structure is due to nonresonant Bragg reflection. Again, the splitting 
in frequency that occurs for small frequency-shifted gain is due to the 
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resonant grating at (o, ~ l ) .  The other two structures are present because of 
the grating at (a, 2kOel). The frequency-upshifted gain is caused by 
resonantly enhanced Bragg reflection. The large frequency-downshifted 
gain is due to Brillouin-like backward four-wave mixing. 

The spectral gain of the Stokes-shifted F- sideband is shown in Fig. 
46.6(c). The gain in this figure represents resonantly enhanced forward four- 
wave mixing. The small periodic ripples, independent of o, correspond to the 
nonresonant forward four-wave-mixing interaction. 

Finally, the gain of the B- sideband forming the phase-conjugate interac- 
tion with the F+ probe is shown in Fig. 46.6(d). It is important to note that the 
major contribution of the back-scattered light for these parameters comes 
from this backward four-wave-mixing interaction. This sideband is domi- 
nated by light that scatters off-axis and is shifted by the larger ion-acoustic 
frequency. 

This convective gain analysis reveals the complexity of the four-sideband 
interaction. Only in certain special limits can the four-sideband interaction 
be simplified to a two-sideband interaction. These limits make sense only in 
experiments, such as those dealing with phase conjugation, where there is 
some external control over which modes are seeded and which gratings are 
driven. In most laser-plasma interaction experiments no such control is 
possible. 

Absolute-Instability Thresholds 
As the intensities of the counterpropagating pump waves are increased, 

the four-sideband interaction becomes absolutely unstable. Absolute insta- 
bilities arise when nontrivial solutions of the linear four-sideband equations 
occur even in the absence of the seed sideband F+(O). On the top graph of 
Figs. 46.7(a) and 46.7(b), the thresholds for the absolute instabilities mea- 
sured in units of convective gain lengths and plotted as a function of the 
transverse perturbation wave number are shown. For a plasma typical of that 
produced in the experiments by Young et a convective gain length 
y&/v = 1 corresponds to a pump intensity I ,  = 1014 ~ / c m - ~ .  The four- 
sideband system is unstable in the shaded areas. 

On the lower graph of Figs. 46.7(a) and 46.7(b), the real part of the 
perturbation frequency at threshold is plotted. Both figures are calculated for 
the case of symmetric pumps and show the data for the nonresonant threshold 
as a solid black line. In a nonresonant medium, a band of wave numbers 
centered about k:~/2k, = 3.1 has the lowest absolute-instability threshold. At 
threshold these modes are not frequency shifted with respect to the pumps. 
The peak of this band of wave numbers varies with the wavelength of the 
pump and the scale length of the medium and results from the synchronous 
coupling of all four sidebands. This is the four-sideband transverse 
modulational instability. It can be viewed as self-induced diffraction and can 
lead to filamentation. At large kl this threshold scales as nlFoI/41BoI, the 
absolute-instability threshold for phase conjugation. In this large-kl region 
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Fig. 46.6 
The gain spectrum for the four sideband inter- 
action at y&/v = w ~ 1 ~ , 1 ~ ~ / 8 w , v  = 0.22 is 
seeded by F+(O) = 0.001; IF,/ = IB,I, and 
y = 0.05; (a) F,, (b) B+, (c) F*-, (dl B*_. 
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the acoustic-wave frequency can be resolved. Each value of the frequency 
corresponds to one of the two resonant-threshold curves. Note that neither 
sign of the acoustic frequency shift is favored in either figure. This occurs 
because the system is invariant to rotations about the pump axis and both 
Stokes and anti-Stokes sidebands are retained in the analysis. This symmetry 
is a fundamental property of the system allowing the sidebands to couple 
simultaneously through a shared set of gratings. The resonant absolute- 

I 
k 

instability thresholds approach the phase-conjugate threshold at large kl. 

i 
Goldman and Williams have studied the resonant absolute instability for 

I phase conjugation in inhomogeneous plasmas with asymmetric pumping.21 
Near kl = 0, the resonant threshold takes on a hybrid character; a result of a 
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Fig. 46.7 
The four-sideband interaction is absolutely unstable in the shaded regions in the top 
graph, and the frequency of the absolutely unstable sidebands at threshold is shown 
in the lower graph for each figure. In (a) y= 0.20, and in (b) y= 0.05. The dashed lines 
correspond to resonant absolute-instability modes at threshold and the solid lines 
correspond to nonresonant absolutely unstable modes at threshold. 
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combination of two-sideband interactions. In fact it is this on-axis resonance 
at which Fig. 46.7(b) shows the lowest absolute instability threshold. 

Since the counterpropagating pump field is only a fraction of the incident 
pump field in inertial confinement applications, it is of particular interest to 
know what effect the imbalance of the pump-wave intensities has on these 
absolute thresholds. In Fig. 46.8 the minimal value of the absolute-instability 
threshold is plotted as a function of I B , ~ F , ~ ~  for two values of the ion-acoustic 
wave damping. For the nonresonant threshold, the small-kl threshold is the 
global minimum until very small values of I B , ~ F , ~ ~  are reached. At these 
values the large-kl phase-conjugate threshold is the minimum absolute- 
instability threshold. For y= 0.2 the minimal threshold corresponds to the 

2 nonresonant curve except at very small values of IBoIFoI . This y = 0.2 curve 
corresponds to kl = 0. When y = 0.05, the minimal threshold is a result of the 
resonant threshold and takes on a global minimum at kl = 0. The second 
curve for this value of the ion-acoustic wave damping corresponds to the 
second threshold at kl = 0. In general, the absolute-instability threshold is 
relatively insensitive to I B , ~ F ~ I ~  until it approaches zero. At I B , ~ F , ~ ~  = 0 the 
two pumps de-couple and no absolute instabilities can arise. From this figure 
it is clear that only a fraction of the incident light needs to be back-scattered 
before the four-sideband instabilities become important. 

Fig. 46.8 
The variation of the minimum absolute-in- 
stability threshold with the ratio of backward - 

to forward pump intensity I B ~ F , ~ ~  is shown. 
The dashed curves correspond to nonresonant - 
absolute-instability thresholds. The lower 
dashed curve corresponds to the minimal 
threshold near k:L/2kO = 3.1, while the 

higher dashed curve corresponds to k : ~/2h,  
= 60.0. The dotted curves correspond to 
resonant absolute-instability thresholds at 

y = 0.05 and k: L/2k0 = 0. The solid curve 

corresponds to the resonant absolute- 
instability threshold at y = 0.20 and 

k :L/2k, = 0. 
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Discussion 
Above the absolute threshold, when the gratings are heavily damped, the 

four-sideband transverse modulational instability results in conical emission 
since the instability grows from noise-level seed sidebands that have no 
preferred orientation. Several recent experiments have been done using 
nonresonant media exhibiting the characteristics of the four-sideband insta- 
bility.24 It is likely that the resonant instabilities will also be identified since 
they are so closely related to well-known instabilities. For plasma conditions 
typical of laser-plasma interaction experiments, this simple model predicts 
threshold intensities of the same magnitude as the intensities typically 
realized. In fact, these thresholds are much lower than those estimated for the 
convective-filamentation instability. 

The primary near-forward and near-backward scattering instabilities that 
occur during the interaction of two intense counterpropagating light waves 
result from the planar four-sideband interactions composed of several 
distinct one- and two-sideband interactions. A true four-sideband instability 

f 

i 

occurs when the four sidebands and two pumps are simultaneously phase 
matched. The four-sideband transverse modulational instability dominates 
the interaction in nonresonant media. In a plasma the four-sideband reso- 
nance is still present, but both the resonantly enhanced phase-conjugate k 
interaction and an on-axis hybrid instability resulting from the simultaneous 
resonantly enhanced interaction of the two types of forward four-wave 
mixing are also important. This latter hybrid instability has the lowest 
absolute-instability threshold for small values of the ion-acoustic wave 
damping. The instabilities arising as a result of the coupling between 
counterpropagating waves dominate the single-wave instabilities and re- 
quire only a fraction of the incident laser to be back-scattered. Thus, the 
second pump wave increases the number of channels by which the laser 
energy is converted into unstable modes, increasing the gain of unstable 
sideband modes. 

In laser-produced plasmas of interest for inertial confinement fusion, 
inhomogeneity, ion inertia, thermal effects, the time dependance of the laser 
pulse, and velocity gradients of the plasma will all have fundamentally 
important effects on the four-sideband interaction. As a result, more detailed 
studies must be carried out before a clear understanding of the role of four- 
sideband instabilities in ICF emerges. 
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