
Section 1 
PROGRESS IN LASER FUSION 

l .A Electron Kinetics in Laser-Driven Inertial 
Confinement Fusion 

One important requirement for the modeling of the dynamics of laser-driven 
inertial confinement fusion (ICF) is a proper understanding of electron 
transport.' Electron transport from the critical surface, where most of the 
laser energy is absorbed, to the cold overdense plasma gives rise to the 
ablatively driven implosion necessary for fusion. The presence of lateral 
transport is responsible for smoothing out short-scale thermal modulations 
that may arise as a result of nonuniform laser illumination, thereby reducing 
the "seed" for instabilities that are detrimental to efficient target compression. 

All processes associated with thermal electron transport are normally 
studied by solving the fluid equations using classical heat conduction 
qc = - K ~ V T ,  where K~ is the thermal conductivity (also known as the 
Spitzer-Hgrm c o n d u ~ t i v i t ~ ) , ~  and T  is the temperature in energy units. 
However, typical laser plasmas involve high temperatures and short scale 
lengths, where the mean free path of a heat-carrying electron (which has an 
energy of about 7 T )  may be comparable to 1 = TIIVT I . ~  Under such 
conditions the electron transport becomes nonlocal, i.e., cannot be adequately 
described in terms of a local V T ,  and fluid theory breaks down. The need for 
a kinetic treatment of the electrons has thus resulted in many transport studies 
based on numerical solutions of the Fokker-Planck (FP) equation.44 Figure 
42.1 schematically shows the consequences of highly nonlocal transport in 
a laser-produced plasma. 
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electrons to deposit their energy ahead of the main heat front, thereby 
causing undesirable preheating of the fuel. Also, if electron thennalization 
is not sufficiently strong to maintain a Maxwellian distribution, the hot 
corona becomes partially depleted of heat-canying electrons. This has the 
effect of reducing their phase-space density gradient, which in turn reduces 
their diffusive flow, thereby lowering the effective heat flow. This 
phenomenon, known as flux inhibition, is commonly identified with a flux- 
limiting parameterf, which when multiplied by the "free-streaming" heat 
flux I 

provides an upper bound to qc.' The resultant heat front is correspondingly 
modified as shown qualitatively in Fig. 42.1. Another manifestation of the 
departure from classical heat flow arises in multidimensional transport 
where q is not necessarily parallel to -VT.'>~ 

These issues and others associated with nonlocal transport in ICF are 
addressed in this article. Our main approach is based on comparisons 
between fluid and FP results. For a review of experimental investigations of 
heat transport we refer to an article by Delettrez (1986).* Other physical 
processes that may also affect the heat flow, suchas magnetic field generation, 
ion-acoustic instability, and strong inverse-bremsstrahlung heating, are 
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reviewed by Kruer (1988).~1n the following sections we first present a brief 
derivation of the classical heat-flow formula, identify several reasons for its 
breakdown, and discuss the physical motivation behind the flux limiter. We 
then provide a more detailed analysis of nonlocal transport by solving the FP 
equation. In particular we demonstrate a case where the simple flux limiter 
fails. This is followed by a section devoted to simulations more closely 
applicable to ICF conditions. We close by discussing the results and what 
further investigations are needed on the subject of nonlocal transport. 

All of the transport simulations presented in this article are obtained using 
the 2-D FP code  SPARK.^'^ The code is Eulerian (in Cartesian or cylindrical 
geometries) and is coupled to a fluid-ion package. Magnetic field effects are 
not presently included. 

Classical Heat Flow and the Flux Limiter 
We start with the electron FP equation for a fully ionized plasma, where 

ions are assumed to be cold and at rest and magnetic-field effects are 
neglected: 

The electron distribution function at a spatial point r, velocity v, and time t 
is given by f(r,v,t), e is the electron charge, m is the electron mass, E is the 
electric field, and C is the FP collision operator. The properties and form of 
the latter are described in detail elsewhere.1° 

The basis for calculating the heat flow from Eq. (1) assumes that the 
plasma is close to thermodynamic equilibrium, so that we may expand f aslo 

where fo(r,v,t) is the isotropic part, taken to be a Maxwellian, and fl  is the 
anisotropic part describing the transport. Substituting Eq. (2) into Eq. (1) and 
dropping the time derivative we obtain 

where A(v) = v4/[n(z+ 1) 4 ~ ( e ~ / m ) ~ l n ~ ]  is the velocity-dependent scattering 
mean free path. In deriving Eq. (3) we have neglected electron-electron 
momentum exchange, an assumption that is strictly valid only for high-Z 
plasmas. However, for the purpose of comparing classical with nonlocal 
transport, this assumption is relatively ~ n i m ~ o r t a n t . ~  
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By invoking quasi-neutrality and therefore zero current 
[i.e., j = -(4n/3) 1 dvv3 f l  = 0] we obtain 

and 

where At=  1 (\)I). We now calculate the heat flow using the definition 1 
and obtain qc = -K~VT, where rC = y m; At, and y = 64(2/d1'2. A more 
detailed calculation of transport coefficients for arbitrary Z and magnetic 
fields is given by Epperlein and Haines (1986).11 

The first problem with the present calculation for q is the fact that the 
perturbation analysis breaks down, i.e., lfllfol n 1, for large v, thus giving rise 
to a negative distribution function. This unphysical behavior is most likely 
to occur for small values of 1 (=T/IVT I), as seen from Eq. (4). More precisely, 
since the main contribution to the heat-flow integral comes from 
v - v* = 3.7 vt, the validity criterion becomes At< 0.002 1, by requiring that 
lf,&l < 1 at v*.3.4712 However, as will be demonstrated in the next section, 
a more accurate criterion should also involve the electron-electron energy- 
loss mean free path. 

Another limitation of the classical heat-flow formulation comes from the 

"free-streaming limit." We may, therefore, arbitrarily define an effective 
heat flow as either y= min (qc,fqf), or q= qc/(l + q , ~ ) , ~  based on the "sharp 
cutoff' or "harmonic mean" method, respectively. Both methods yield 
similar results, though the harmonic mean, adopted in this study, gives a 
stronger reduction for a given value of f .  Currently acceptable values 
for f range from about 0.03 to 0.2 (larger values essentially give 
q = qc).8 Apriori, based on the simple arguments presented above, there is 
no simple way to predict a unique value off. Also, because of its local 
character, one cannot expect the flux limiter to be applicable in situations 
where nonlocal transport effects are dominant. In particular, it fails to 
account for the possibility of preheat. 

Although the flux limiter is avery useful tool in many situations, one must 
exercise caution when using it. As will be demonstrated in the following 
sections there are certain cases for which it is totally inadequate. 
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Heat Flow in a Homogeneous Plasma 
To more accurately investigate nonlocal transport the FP equation must 

be solved numerically. Our starting assumption is once again the expansion 

I defined by Eq. (2), which is sufficient for demonstrating the major features 
of nonlocal transport and is probably adequate for most transport 
problems relevant to ICF .~  The contributions from other terms in the 
expansion become necessary when one is interested in nearly collisionless 
phenomena and electromagnetic instabilities.13 

We do not assume a Maxwellian form for fo, unlike in the previous 
section, but rather solve for it using the equation 

YnZ 2 d ) 6v &J & 
Cofo+Do-fo +-vo-fo 

where a = IelElm. Y = 4n(e2/m)'lnA, and Colfo) and DoCfo) are integral 
operators, as defined by Shkarofsky et al.1° The last term in the equation is 
the inverse-bremsstrahlung operator, with vo being the electron quiver 
velocity in the laser field.14 Equations (3) and (5), coupled with the quasi- 
neutrality condition and a few modifications to account for ion motion, are 
solved in the 2-D code SPARK, the details of which are described in Refs. 
5 and 6. 

As a first illustration of kinetic transport consider a homogeneous plasma 
of temperature To, where we apply a perturbation of the form G7(t)ei", 
such that &" << To. Using the energy-conservation equation 
(3/2)ndtT + V q = 0, it is easily shown that GTc(t) = GTc (t = ~ ) e - ' ~ ,  
where a = 2 2  xC/3n is the classical decay rate. By numerically calculating 
the temperature decay using SPARK, and defining a,= 22~,/3n, it 
is then possible to obtain x,/xc. This gives us a measure of departure 
from classical transport. By varying k we obtain different values of K ~ ~ / K , ,  
which are then plotted in Fig. 42.2 as a function of (kAd)-', where 
Ad = (AeA~li2 = (Z + l)li2At is an effective delocalization length 
(or stopping length), and Ae = ~ ~ / 4 m e ~ l n A  is the energy-loss mean free 
path.1s The origin of Admay be traced back to Eqs. (3) and (5) by estimating 

as the electron-electron energy-loss term, and comparing it to the spatial 
diffusion term v V fl  - vtArvifo - vtAt fo/At, assuming v = vt. In effect, Ad 
provides a better measure of delocalization than At alone (with some 
appropriate weighting to account for the higher-velocity heat-carrying 
electrons), since it also depends on the strength of the electron-electron 
energy loss. 
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In Fig. 42.2 we observe a departure from classical heat flow, in the form 
of flux inhibition, for scale lengths k -' i 200 A& Such an effect, which has 
been predicted by Bell in the context of ion waves,16 clearly demonstrates a 
situation where nonlocal electron transport is present and yet qc fq , i.e., the f 
heat flow is unsaturated. In fact, since the heat flow is arbitrarily small, there 
is no unique value off that will give qm = qc. The explanation for the flux 
inhibition comes from the fact that, for 1 cc 200 Ad, the heat-carrying electrons 
are able to diffuse across many wavelengths, thereby reducing their 
density gradient in phase space. Since the modulation elkr refers to the 
thermal electrons (with energies - T), and the electron thermalization to 
higher energies (E* - 7T) is not instantaneous, the effective heat flux is 
reduced, as shown schematically in Fig. 42.3. i 

Fig. 42.2 At this point it is interesting to investigate the properties of so-called 
Plot of K ~ ~ / K ~  (solid curve) and Kd/K,(dashed delocalization models of heat flux, designed to bridge the gap between fluid 
curves) as functions of (kid)-'. Data points and kinetic theories. The simplest one, first proposed by Luciani era1.,15 is 
are obtained from a 2-D FP simulation. given by 

m 

* qc ( - x ' )  exp - x  - x  / A  ( x  
-m 

[ I  t I o l l  

for a homogeneous plasma. Here, A. = aAd and a is a free parameter. By 
Fourier analyzing the above equation it is straightforward to show that 



Fig. 42.3 
Qualitative description of nonlocal transport. In the distribution plots, solid curves 
are based on a kinetic calculation, whereas dashed curves are obtained assuming a 
Maxwellian distribution at the local temperature. 

so that at first sight it appears to have the desired property that K /K 
d. 

decreases for large kAd' However, plotting this function in Fig. 42.2 using 
a = 3G35 (which covers the range of values quoted in the literature)15 gives 
pooragreement with the FP data. The main reason is that for large 
kA8 K ~ / K (  - (kAd)-l, whereas ~ ~ 1 %  - ( k ~ ~ ) - ~ .  Such a discrepancy may 
explain the somewhat limited success enjoyed by delocalization models in 
ICF-related transport s imu~ations.~"~ 

Heat Flow in a Laser-Heated Plasma 
Here we review the results of 2-D transport simulations that illustrate 

some of the subtleties associated with nonlocal transport. We investigate the 
thermal response of a CH target that has been subjected to nonuniform laser 
irradiation. It is particularly important to predict the level of thermal 
smoothing at the beginning of the laser pulse since the effectiveness of the 
implosion may depend on it. 

As it is not yet feasible to run a full 2-D laser-ablative implosion using 
SPARK we restrict ourselves to the early-time response by keeping the ions 
stationary. The background density profile, shown in Fig. 42.4, is obtained 
using the 1-D fluid code LILAC." The conditions correspond to that of a 
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Density n (normalized to the critical density value) and temperature T (in eV) 
profiles after a 100-ps laser pulse. Curves are identified as in Fig. 42.1. 

300-pm-diameter, 10-pm-thick CH target irradiated by a 0.35-pm laser 
of peak intensity 5 x 1 0 ' ~  w/cm2 and a Gaussian temporal pulse of 600-ps 
FWHM. The plot is taken at 600 ps before the peak, when the intensity is 
-3 x loL3 w/cm2. SPARK is initialized at this intensity (which is maintained 
constant in time) and at a temperature of 50 eV. After a few tens of 
picoseconds the coronal temperature reaches approximately 300 eV and the 
thermal front evolves in a quasi-steady fashion. Figure 42.4 shows the FP 
and fluid results at 100 ps. The very slight flux inhibition (not noticeable in 
the figure) is well modeled by using f = 0.1 (harmonic). We note that the 

into the overdense plasma) so that we also obtain better agreement for the 
laser absorption fraction cp, i.e., cp - 0.74, cpc = 0.78 and cp (f = 0.1) = 0.73. 

TP- 
Such a result is typical for simulations with short-wavelength lasers (<I pm) 
at moderate intensities (<1015 ~ / c r n ~ ) . ~ , ' ~  

The above simulation has been repeated by applying a small modulation 
in the x direction to the incident laser intensity of the form sin (kt), 
where AL = 2zlk = 10 pm. Figure 42.5 shows the calculated root-mean- 
square (rms) temperature deviation at 100 ps defined by 

o = {[J~x(T - (T))2] / J ~ X Y ' ~ ( T ) - ' ,  
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where(T) is the average temperature. All plots have been normalized to the 
rms laser intensity. Axial and transverse heat flow, normalized to q , are f 
shown in Figs. 42.6(a) and42.6(b), respectively. Here, qc is calculated using 
the FP temperature profiles. 

Fig. 42.5 Despite the good agreement between fluid and kinetic results for the 1 -D 
Plot of the rms temperature deviation temperature profiles, the same is not true forthe transverse spatial modulation. 

to the laser-intensity Nonlocal transport gives rise to less smoothing in the corona and an 
deviation) as a function Of '. Curves are enhancement at higher densities. Both these regimes are now discussed in 
identified as in Fig. 42.1. 

turn. To characterize the coronal smoothing, the ratio oFploc is calculated 
at the critical surface and the result is plotted in Fig. 42.7 as a function of AL. 
The increase of oFp/oc as A, + 0 is a consequence of lateral heat-flux 
inhibition, of the type discussed in the previous section for the special case 
of a homogeneous plasma. For a more quantitative demonstration of this 
effect we first assume that S - ik(qFP)x- ik(q ) in the corona, where S is the 

C X .  
laser energy deposition rate. Using the definition rFP= - (qFP)x/ik6TFP, 
we find that rFp/rc - 6 Tc/6 TFp - ( o ~ / ~ ) - ' ,  allowing us to plot rFp/rC 
as a function of AL/(27rAd) in Fig. 42.2 (full circles), where Ad = 0.75 pm 
at the critical surface. This occurrence of reduced coronal thermal smoothing 
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Plot of heat flow (normalized to 4 ) in the (a) z direction (axial) and in the f 
(b) .r direction (transverse) at .x = 0, as functions of z. Here, solid curves refer to qFP, 
whereas dashed curves refer to qc using FP temperatures. 

in longer-scale-length plasmas irradiated by higher intensities has been 
previously reported by Epperlein et al? 

The clue for the enhanced smoothing at high densities lies in the axial flux 
inhibition near critical [see Fig. 42.6(a)]. This acts to reduce the effective 
flow of thermal modulation away from the critical surface to the overdense 
plasma. By applying a flux limiter we can reproduce this effect to some 
extent as shown in Fig. 42.7. The enhancement of lateral thermal smoothing 
due to axial flux inhibition was first predicted by ~ k u ~ s k ~ , ' ~  using a crude 
steady-state fluid model. More recently Rickard et a1.20 used a FP code to 
predict a large increase in thermal smoothing in the long-wavelength (Al) 
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Fig. 42.7 
Plot of oFP/oc (solid curves) and o *  (f = 0. l)/oc (dash-dotted curve) as functions 

of iL urn), calculated at ncritical and at maximum pressure. 

limit. They used, however, a much higher laser intensity ( 1 0 ' ~  w/cm2) that 
gave rise to a much stronger axial flux inhibition and hence reduced thermal 
modulation at high densities. Here we calculate oFP/oc where pressure is a 
maximum pmax (-4.4 pm away from the critical surface) and obtain only a 
modest enhancement in smoothing at large wavelengths, as seen in Fig. 42.5. 
We do, however, predict that for a wide range of Al (6 pm - 40 pm), 
oFP/oc - 0.5, which represents a factor of -2 improvement in pressure 
uniformity at pmax At smaller wavelengths the reduced lateral smoothing 
at critical starts to dominate and the value of ow /q increases again. (In 
practice this is relatively unimportant since at pmaX, we find that a <  for 
lL < 6 pm.) These effects are not accurately modeled with flux-limited 
classical transport as shown in Fig. 42.7 by plotting o (f = 0. l)/or. 

Conclusions 
Care must be taken when interpreting transport data using flux-limited 

classical heat conduction. For short-wavelength lasers (<1 pm) at moderate 
intensities (< 1 0 ' ~  w/cm2) a fluid model provides an adequate description of 
the transport under uniform illumination conditions. A modest amount of 
flux limitation (f - 0.1) is then sufficient to fine tune the results. However, 
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When simulating 2-D transport, which may arise as aresult ofnonuniform 
laser irradiation, nonlocal effects can drastically alter the results, even when 
the average I-D transport appears well modeled by fluid theory. The main 
consequences of nonlocal transport are given as follows: 

one must be aware that classical transport (flux limited or otherwise) cannot 
model preheat because of the long-mean-free-path electrons. In the FP 
simulations presented here this issue was not addressed satisfactorily because 
of the relatively high initial plasma temperatures. Mima et have 
recently shown, using a 1 -D FP code coupled to a Lagrangian fluid solver, 
that preheat can significantly degrade the performance of thin low-Z shell 
targets irradiated by 0.53-pm laser light. The magnitude of this effect is 
expected to be less for shorter-wavelength lasers, by virtue of the higher 
collisionality of the plasma, though the exact extent remains to be investigated. 

1. A severe reduction in the coronal thermal smoothing for spatial 
modulations less than about 200 (Z + I)''~{. 

b 

I 

2. An enhancement in the smoothing at highdensities, especially near the 
pressure maximum, for all spatial modulations. 

The first consequence is well explained in terms of flux inhibition of 
short-scale modulations in a homogeneous plasma. Its main impact would 
be to reduce the threshold for thermal self-focusing ins tab i~ i t i es~~ or any 
other instabilities that rely on coronal temperature modulations. 

The second result arises from the axial flux inhibition from the critical 
density to higher densities, which acts to reduce the propagation of thermal 
modulations. The scaling of this phenomenon with plasma and laser 
conditions has not been fully investigated, nor has the issue of hydrodynamic 
feedback been addressed. However, the simulations presented here suggest 
the possibility of a two-fold increase in smoothing (when compared with 
classical heat-flow modeling) over a wide range of modulation wavelengths. 
Such an outcome is potentially very beneficial to ICF since, for a given 
nonunifonnity in the incident laser, it predicts a smoother ablation pressure 
and less chance for seeding hydrodynamic instabilities. 
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