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2.B Thermodynamics of a Polarizable 
One-Component Plasma 

Introduction 
The thermodynamic properties of dense plasmas, of electron density 
loz2 to loz6 ~ r n - ~ ,  in the temperature range 1 eV to 1 KeV, are not 
well known. At these high densities, the ion-ion interactions are very 
strong and generally their contribution to the plasma free energy cannot 
be regarded as minor. 

Further, the ion interactions cannot be easily treated in terms of 
conventional two-body collision integrals because a typical ion is actually 
in "strong" collision with several neighboring ions simultaneously. A 
strong collision is one in which an appreciable part of an ion's kinetic 
energy is converted into potential energy during the collision. A measure 
of the importance of strong collisions is provided by the parameter 
I' = Ze2/akT (where a is the ion sphere radius, given by 4?rnia3/3 = 1). 
When I' > 1, in effect, an ion is always in the strong collision regime; 
for our purposes the region of interest is 10 > r > 0.1. 

In addition, the electron-ion interactions contribute appreciable binding 
energy. Electrons tend to bunch around ions, providing shielding for the 
ions. This shielding is not very important at extremely high densities 
because the electrons are then quite degenerate and the Fermi energy 
(measured by the parameter b = p/kT, where p is the chemical 
potential) greatly exceeds the interaction energy (measured by I'), 
resulting in electrons that are fairly uniformly distributed throughout the 
plasma. At lower densities (measured by the parameter b/r - I ) ,  and 
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at higher temperatures or smaller values of I?, electrons are only partially 
degenerate and bunching around ions takes place, thereby polarizing 
the plasma. 

High-density plasmas have been represented by a model consisting 
of pointlike ions embedded in a uniform electron background, called the 
one-component plasma (OCP). The OCP has been studied intensively 
by a number of investigators1 because it simulates low temperature, 
high density, and fully ionized plasmas - yet its thermodynamic prop- 
erties are simplified, being a function of just the one parameter I'. Monte 
Carlo techniques are used to evaluate the complicated ion-ion inter- 
actions. While the OCP can model very high-density plasmas, its range 
of applicability can only be determined by comparison with a more 
physical plasma model. In our present work we do so and find that 
deviations in the estimates of the internal energy and pressure start 
appearing when the ion density falls appreciably below 9 x 1OZ8 ~ m - ~ .  
The purpose of these calculations is to supplement these classical OCP 
investigations by determining the thermodynamic properties of dense 
plasmas that are only partially degenerate. This work extends similar 
calculations by DeWitt and Hubbard2 and Totsuji and Takami.3 An 
additional purpose is to determine radial distribution functions for 
partially degenerate plasmas; these can be used for testing theoretical 
methods of calculating plasma properties. 

The Calculation 
The thermodynamic properties result from evaluation of derivatives of 

the free energy, or of the partition function, with respect to temperature 
and density. To evaluate U = -(dl nilap),, pP = (dl nilav),, etc., we 
start with N pointlike ions and the expression for the partition function: 

The plasmas are assumed completely ionized; this assumption limits 
the applicability of the present phase of this work. Following a 
procedure discussed by Ashcroft and S t r ~ u d , ~  the trace in the integral 
may be evaluated when the electron density fluctuations are linear in the 
electric potential, as, for instance, 6 F(k) = q2v(k) g(k) (where the tilde 
signifies the Fourier transform), and the Helmholtz free energy can then 
be calculated. 

The dielectric function was calculated using the linear form of a 
density matrix, a procedure developed by March and Murray;= this 
gives 

4 k '  k + 2k' 
q2v(k) = dk' . (2) 

"aeohrk 

Here, is the chemical potential and k2[c(k) - 11 = q2v(k). 
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This form is in agreement with the random phase approximation 
(RPA) dielectric function used by Totsuji and Takami.3 The potential 
closely approximates exp(-qr)/r, where q is the Thomas-Fermi wave 
number. There are additional oscillatory terms, of order r-3, which 
amount to a few percent for values of r that are of interest (see Fig. 
28.7). These minor Friedel oscillation terms can provide long-term 
coupling of the plasma at distances greater than a few ion-sphere radii. 

Plotofy = x+(x)-exp[-qx] vs x 

lo" I 1 l O - l  

Fig. 28.7 One gets .? in a form useful for performing a Monte Carlo calculation: 
Departures of the calculated potential from 
a Yukawa potential. Here, x = r/a, where a 
is the ion-sphere radius. (The usual plasma 
density parameter, r, = a/aBohr, is given 2 = e (ideal ions) + F(free electrons)' Fpol] . e - s " e ~ ,  (3) 

by r, - 2 I'/b.) 

where BUeH = 3 8 (CC ZIZJd ( I R, - RJ I 
I t J  
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and 

z (k) = 
4lr 

k2 + q2 tl (k) 

For the plasmas presently being considered, F,,, is a small second- 
order term that can be ignored. The calculations use an Ewald sum 
technique for calculating Ue,! and evaluating the pair distribution 
function. In effect, the plasma IS represented as a cubic lattice, with N 
(= 128) ions per cell. For details, see Ref. 7. 

In addition to the ordinary internal energy and pressure terms 
associated with noninteracting electron and ion gases, there are excess 
energy and pressure terms attributable to the interactions; these are 

where < U,,/N> and <qr> are quantities resulting from the Monte 
Carlo calculation, and q*  is calculated from the limiting value of the 
effective two-body potential when r+O. Here, a is the ion sphere radius. 

Results 
Figure 28.8 shows the excess-energy term. It has been divided into 

two parts: (1) the energy per ion of a reference rigid body-centered 
cubic lattice (BCC); and (2) the difference in energy per ion between the 
plasma and the BCC lattice. 

At large I' the BCC lattice energy dominates. The BCC excess energy 
decreases from the OCP value as the density decreases. This reflects 
the binding energy of the electrons as they cluster around individual 
ions. For the plasmas studied, the difference in excess energy, plasma 
to lattice, also decreases with density, amounting to 0.5 kT per ion at ion 
densities of 2 x ~ r n - ~  (for Z = 1). The difference in energies is not 
a strong function of I' at low densities. The very low-density, high-I' 
models may be quite unphysical because deionization is not taken into 
account; for these models the plasma excess energy is less than that of 
the BCC lattice. 

The excess-pressure terms must be tabulated. For the OCP, the terms 
involving q and q *  are absent in the expression for the excess 
pressure. The extra terms can cause the excess pressure to be more 
negative by up to 20% than in the OCP case. The calculations show 
that the following crude approximations may be used: 
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Fig. 28.8 
Excess energies vs r/b(= I'kT& Z 0.5rJ. 
The heavy solid line refers to a reference pUeff 
BCC lattice and the scale on the right. The < - > - - (0.9 + 0.0331,) r Z 2  where r, = ala ,,,, , 

N (8) 
other curves, for constant r , refer to the 
scale on the left. 

and 

Z 
<qr> - min (-qa, 2) and q *  - q. 

3 (9) 

The pair-correlation functions show some unusual features (see Fig. 
28.9). The minor oscillations beyond the first maximum first decrease in 
amplitude as one goes to lower densities and then increase in strength 
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Fig. 28.9 
Pair-correlation functions vs r/a, where a is the ion-sphere radius. The various curves are labeled by 
a density parameter (see Fig. 28.8). 

(with a phase shift) as one goes to the lowest densities studied. This 
behavior is for all the models, down to the lowest value of I? for which 
the oscillations can be studied. A modern theoretical interpretation, 
based on using the modified hyper-netted chain equation, will be tried 
in the future. 

This work is basically complete from I' = 200 to 1, and r, = 0 to 3 
(here r, = a/b,,,,) and for Z = 1. The extension to the extremely 
interesting high-temperature regime, r = 0.01 to F = 1, requires 
supercomputer time because extensive tables must be stored in order 
to calculate the necessary temperature and density derivatives. 
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