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2.C Stimulated Raman Scattering in a Collisional 
Homogeneous Plasma 

In the last two decades, the coherent nonlinear interaction of three coupled 
waves has received considerable attention. It occurs in the process of 
stimulated Raman scattering (SRS) in the plasma corona that surrounds 
the fuel pellet in laser-fusion experiments. In this process an incident light 
wave decays into a Langmuir wave and a scattered light wave. It is 
important to calculate the amplitudes of the daughter waves for two 
reasons. First, light energy that is scattered away from the pellet can no 
longer assist in the ablation process. Second, the breaking of the Langmuir 
wave generates hot electrons, which can preheat the fuel and thereby 
reduce the amount of compression. 

The standard approach to this problem is to derive evolution equations 
for the amplitude of each wave, which can then be solved in a variety of 
ways. For instance, in cases in which the wave amplitudes depend on both 
space and time, one could use the Inverse Scattering Transform.' In 
temporal problems, the solutions are assumed to be homogeneous in 
space, and the problem reduces to that of three coupled simple harmonic 
oscillators whose natural frequency w, depends parametrically on the 
wavenumber k,. Spatial problems typically involve a constant-amplitude 
pump wave impinging on a medium which may be finite or semi-infinite 
in length. One then solves a two-point boundary value problem to 
determine the steady-state amplitude of each wave. 

Here, we consider the temporal problem for SRS in a collisional homo- 
geneous plasma. The electromagnetic waves are collisionally damped 
while the plasma wave is affected by collisions and a phenomenological 
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term representing Landau damping. This problem, with a different 
damping coefficient for each wave, has previously been thought intractable 
by analytic means2 In this article, we formulate a slightly different problem 
by introducing a driving term into the pump equation. This balances the 
energy lost by dissipation and permits a steady, spatially uniform oscillation 
of the pump wave. However, this equilibrium is unstable since the amplitude 
of the pump wave is above its SRS threshold value. Energy is therefore 
exchanged between the waves until a new and stable equilibrium condition 
is reached. Previ~usly,~ we calculated the steady-state amplitude of each 
wave when the system was only marginally unstable. Here, the calculation 
is extended to include the highly unstable regime. 

The governing equations for SRS assume their simplest form when 
written in terms of the action amplitude of each wave. The square of the 
action amplitude, namely the action density, is defined to be the energy 
density of each wave divided by its natural frequency, which is 
proportional to the number density of quanta present in each wave field. 
The resulting simplification of the basic equations reflects the fact that 
physically, SRS is the decay (and recomb~nation) of an incident pump 
photon into a scattered photon and a plasmon. The governing 
equations are 

a + v2) A, = - icA,A:exp( - i6t), 
(at 

a + v3) A3 = - icAIA:exp(- itit), 
(at 

where 

is the frequency mismatch, and the subscripts 1, 2, and 3 refer to the 
incident pump wave, the scattered electromagnetic wave, and the 
plasma wave, respectively. We see that the exchange of energy, made 
possible by the terms that are quadratic in the wave amplitudes, is 
modified by the effects of damping and frequency mismatch. Explicit 
expressions for the coupling constant c, and the damping rates v,, can 
be found in Ref. 1. The initial amplitude of the pump wave is equal to 
A1(0), while the daughter waves initially have noise-level amplitudes. 

A standard linear analysis of Eqs. (1 a)-(1 c) shows that the threshold 
ampl~tude of the pump, denoted by Ale, is given by 

where r = 61(v2 + v3) is the mismatch ratio. When the pump amplitude 
exceeds its threshold value, the daughter waves grow exponentially in 
time. The linear growth rate y is equal to the root of 
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which has the largest real part. Eventually, nonlinear effects become 
important and modify the temporal evolution of the system. 

Let us now examine the nonlinear interaction. In the absence of 
damping, Eqs. (la)-(lc) yield periodic solutions which can be 
expressed in closed form, in terms of elliptic functions4 There is there- 
fore a periodic exchange of energy between the pump wave and its 
daughter waves, as shown in Fig. 23.28. In this and subsequent figures, 
we have measured time in units of Q-l, where Q is a naturally occur- 
ring frequency parameter of the order of up. An explicit expression for 
Q is given in Ref. 1. The peak energy of the backscattered wave, which 
we denote by EPp, is related to the initial energy contained in the pump 
wave by the familiar Manley-Rowe relationship E2plu2 = E1(0)/ul. 

Fig. 23.28 
Action density of each mode as a function 
of time, in units of mnve2/2w,. We have 
taken v,/c = 0.040, vl = v2 = vs = 0, 
and set the mismatch ratio equal to zero. 
The solid line represents mode 1,  the dot- 
dash line represents mode 2, and the 
broken line represents mode 3. 

A more realistic case, however, is to be found in a collisionless 
plasma where the two electromagnetic waves are undamped and the 
Langmuir wave is Landau damped. In this case, the governing 
equations can easily be reduced to a single equation that describes a 
damped nonlinear o~ci l la tor .~ This is readily solved to determine the 
temporal behavior of the system. Our results are plotted in Fig. 23.29, 
in complete agreement with those of Fuchs and B e a ~ d r y , ~  and Hiob 
and Barnard.6 However, our interpretation differs from that of Hiob and 
Barnard. During the first half-cycle (t < 110 Q-I), the pump wave 
transfers action to the daughter waves. In the terminology of quantum 
field theory, one pump photon decays into a scattered photon and a 
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Fig. 23.29 
Action density of each mode as a function 
of time, in units of mnve2/2wp. We have 
taken v,/c = 0.040, v l  = v2 = 0, v3 = 

0.020Q, and set the mismatch ratio equal 
to zero. The solid line represents mode 1, 
the dot-dash line represents mode 2, and 
the broken line represents mode 3. 

plasmon. Because damping acts continually on the plasma wave, at 
time t = 110 Q-I the action density of the plasma wave is less than 
that of the scattered electromagnetic wave. Consequently, during the 
second half-cycle, when a scattered photon and a plasmon recombine 
to create a pump photon, we run out of plasmons before the action 
density of the pump can be restored to its initial value. Thus, in each 
complete cycle, action is irreversibly transferred to the scattered light 
wave. As time increases, the plasmon action density tends to zero and 
no recombination can take place. Hence, the system tends to the 
steady state E, = E3 = 0, E2 = ( w ~ / w ~ )  El (0), as shown in the figure. 
The steady-state reflectivity, which is defined to be the ratio of the final 
energy density of mode 2 to the initial energy density of mode 1, is 
simply 

It is interesting to note that although the time taken to reach the final 
state depends on v,, the reflectivity is independent of it. 

The most general case, in which all three waves are damped arbi- 
trarily, occurs in a collisional plasma. It has been shown that a complete 
analytic solution to this problem cannot be obtained in terms of known 
functions2 However, Eqs. (1 a)-(1 c) can, of course, be integrated 
numerically. The result of one such integration is shown in Fig. 23.30. 
It can be seen that after some transient oscillatory behavior, the system 
tends asymptotically to a nonlinear steady state. This steady state can 
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Fig. 23.30 
Action density of each mode as a function 
of time, in units of mnve2/2w,. We have 
taken ve/c = 0.040, V I  = vz = 0.005Q, 
v3 = 0.020 Q, and set the mismatch ratio 
equal to zero. The solid line represents 
mode 1,  the dot-dash line represents mode 
2, and the broken line represents mode 3. 
I/l[h = 4. 

be determined analytically. After some algebra, Eqs. (1 a)-(1 c) yield the 
following expressions for the action density of each wave: 

where m is the factor by which the initial pump amplitude exceeds its 
threshold value [i.e., A,(O) = mAlo]. The interpretation of these results 
is straightforward. 

0 250 500 750 1000 1250 1500 
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From Eq. ( la),  we see that the beating of the two daughter waves 
gives rise to an electric field at the pump frequency. When 6 is equal to 
zero, the self-generated field is out of phase with the pump field by 
exactly a radians, so its effect is to decrease the net field at the driving 
frequency. A nonlinear steady state cannot occur unless the pump 
amplitude is equal to its threshold value. This determines the strength of 
the self-generated field, which in turn determines the amplitude of each 
daughter wave. When 6 is nonzero, in addition to being depleted, the 
pump wave is subject to a nonlinear phase shift that further inhibits the 
transfer of energy to the daughter waves. In Fig. 23.31 we have plotted 
the action density of mode 2 as a function of m, for several values of the 
mismatch ratio. 
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Fig. 23.3 1 
Steady-state action density of mode 2 as a 
function of m, in multiples of (vl/v2) IAloJ2. 
Results are shown for several values of the 
mismatch ratio r. 

The relationship between the final action densities of modes 2 and 3 
is also easily explained. In this three-wave interaction, plasmons and 
scattered photons are created in pairs. In steady state, the loss of each 
due to damping must therefore occur at the same rate. Hence 
2v2)A,l2 = 2v3(A3 1 2 ,  which is just Eq. (5c). 

Rewriting Eq. (5b) in terms of energy densities, we obtain the 
following expression for the reflection coefficient. This is again defined 
to be the ratio of the final energy density of the scattered electro- 
magnetic wave to the initial energy density of the pump wave. 

This is shown in Fig. 23.32. Notice how the reflection coefficient reaches 
a maximum, as a function of increasing initial pump intensity, and 
decreases thereafter. This type of behavior has recently been observed 
in long-plasma-scale-length experiments performed by Herbst et a/.' 
A quantitative comparison of our theoretical predictions with experi- 
mental results is now under way. 

An important feature of Eq. (6) is its sensitivity to the threshold 
amplitude of the pump. Thus, any mechanism that alters the threshold 
can change the steady-state reflectivity. One such mechanism is the 
breaking of the electron plasma wave, which gives rise to a hot-electron 
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tail on the electron distr~bution function. This augments the cold Landau 
damping by an amount 

In some cases, Y, can be of comparable magnitude to max (v,,, vLc). One 
must then work with a self-consistent threshold that is itself a function of the 
incident laser intensity. Offenberger et have shown that this can 
significantly affect the reflectivity. In general, the reflectivity will be reduced. 

Fig. 23.32 
Steady-state reflectivity of the plasma as a 
function of incident laser intensity, in multi- 
ples of (wpv~/u,vp). Results are shown for 
several values of the mismatch ratio r. 

In summary, SRS was considered in a homogeneous plasma, with all 
three waves damped. The nonlinear saturation of the instability was 
examined for incident pump amplitudes well in excess of threshold. A 
nonlinear steady state cannot occur until the pump field is reduced to 
its threshold amplitude. This determines the magnitude of the self- 
generated field at the pump frequency, which in turn determines the 
saturated amplitude of each daughter wave. The resultant reflection 
coefficient differs from a previous calculation5 in that it reaches a 
maximum, as a function of increasing initial pump intensity, and 
decreases thereafter. This type of behavior has recently been observed 
in experiments conducted with long-scale-length plasmas. 
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