
Section 3 
ADVANCED TECHNOLOGY 
DEVELOPMENTS 

3.A Time-Dependent Semiclassica.l Theory of 
Gain-Coupled Distributed Feedback Lasers 

Recent interest in the transient behavior of distributed feedback lasers 
(DFL) has created the need for a more complete theoretical analysis 
than has existed previously. The photon rate equation model used by 
Zs. Borl treats the time dependence of the laser output, but due to 
the mean field approximation inherent in this theory it is unable to 
treat the regime where spatial propagation and cavity length become 
important in determining the output pulse duration. This regime is of 
particular interest because of the possibility of producing single pulses 
of picosecond duration from such lasers. 

The fundamental characteristic of a distributed feedback laser is 
that in the absence of external mirrors, the necessary feedback is 
provided by Bragg scattering from spatially periodic variations of the 
complex refractive index of the laser medium. This can be either the 
real component or the imaginary component (gain) of the material 
index or the effective index (as in an optical waveguide). In the case 
where the gain is used to vary the complex index, a nonlinear 
coupling occurs between the gain and the optical field. As the light 
intensity in the excited region increases, the gain is depleted, destroy- 
ing the feedback and allowing the light to escape the medium. This 
self cavity-dumping can, for a range of pump energies, produce a 
train of ultrashort pulses. Typically these pulses are 50-100 times 
shorter than the pump pulse used.' 
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Semiclassical Theory of DFL 
As in the rate equation theory,' the gain medium IS modeled 

according to Fig. 18.21. Following the approach of Sargent et the 
system is described by the equations for the density matrix: 

Note that p,, is the population of level i, and y is the homogeneous 
linewidth of the lasing transition. V,, = -pE(z,t) is the atomlc inter- 
act ion energy, p is the dipole matrix element, and E(z,t) = 
% [A(z,t)exp(iwt) + c.c.1 IS the electric field in terms of the slowly 
varying envelope A(z.t). Here c.c, denotes the complex conjugate. 

Fig. 18.21 
The four-level system used for both the 
photon and semiciassicai rate equations. 
The decay rates y,: and r,, are assumed 
to be large. 

The density-matrix equations can be simplified by making the rate 
equation approximation for the gain medium (not the fields'), which is 
valid when the linewidth y is sufficiently large.A,4 After forrnally inte- 
grating Eq. ( I c )  and assuming that A(z,tj and the population inversion 
w(z,t) -- p,, - p,, vary little in time, y-l ,  p2, becomes approximately 

where A = W, - w and nonresonant terms have been neglected 
(rotating wave approximation5). Substituting Eq. (2) into Eqs. ( la )  and 
(I b) leads to 
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The equations are further simplified by assuming that yl, is large so 
that pll << p,, and w = p,,. Then the inversion w obeys 

where 

To provide feedback for the gain-coupled DFL the pumping rate A, 
is spatially modulated with a period ,I = rip,, 

A, = NA(t) (1 + V cos 2p0z) 

where, again, V is the visibility of the fringes and where A(t) accounts 
for the time dependence of the pumping, which may be provided by a 
laser pulse. To remove the rapid spatial modulation from the equations, 
and to go to a macroscopic description, a new inversion density 
variable W is defined by 

Nw w=-- 
1 + v cos 2p0z 

'The equation for the time dependence of W is then, from Eq. (4), 

The field evolution is determined by the wave equation, 

where the polarization P = YZ [P(z,t) exp ( i d )  + c.c.1 

If A(z,t) is separated into two counter-propagating waves 

and substituted into Eq. (7) we obtain (ignoring second derivatives of 
R and S as well as the first derivative of P) 

where a prime (e.g., R') indicates a partial derivative with respect to z. 
In the semiclassical theory the polarization is determined by 
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Using the value of p,, = p,; from Eq. (2) we get 

Significant feedback occurs only for P = Po. Using this fact and 
Eq. (1 1 ) ,  E q  (9) can be separated into the following two equations: 

where 6 = (p2-P;)/2Po and a = 2rpNp2/h(iASr).  Equations (12a) 
and (12b) were obtained by neglecting terms in exp(+i3p0z), i.e., by 
assuming that W is slowly varying spatially. This neglects spatial hole 
burning, which has been found to be relatively unimportant, in 
agreement with the steady-state case.' 

Depletion of the ground state, level 0, is accounted for in the 
normal manner through the pump term A(t), i.e., by replacing 

In order to simulate spontaneous emission, a uniform noise term 
equivalent to one photon in the excited region was introduced into 
the field equations. The time-averaged energy is 

where the integral is over the volume V, of the excited region. 
Assuming the noise to be equal in both directions, we find for the 
noise fields 

The final equations are then, 

n '  aWV f?' - , R + (crW-16) (RSR,) = - 7 (1 5a) 

In going from Eq. (6) to Eq. (15c) the cross terms of I A I ~  were 
neglected, consistent with the assumption of no spatial hole burning. 
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Fig 18 22 
Total ~ntensity I = R2 + S2 and populalion 
inversion density W plotted as functions of 
time and space for an increasing pump 
energy The pump-pulse duratlon was 70 
ps, and the pumped region was 0 1 cm in 
length The relative values of the pump 
energies are (a) 0 5  (b) 1 1, (c) 1 5 and 
(d) 2 0 The vertical scales are normalized, 
and the time axis represents 120-ps full 
scale 

DFL Calculations 
Equations (15a), (15b), and (15c) were solved numerically. Due to 

the counter-propagating nature of the field solutions a second-order 
Euler method was used which required a square integration grid (Lz = 

cLt).  The equations were integrated subject to the boundary conditions 
that S(L,t) = R(0,t) = W(z,O) = 0, and that A(t) be Gaussian in time and 
uniform in space. 
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Fig. 7 8.23 
Duration of the first pulse as a function of 
the length of the DFL for a 3.5-ns pump 
puise and (a) the second pulse at thres- 
hoid, and (b) the third pulse at threshold. 
The dashed line corresponds to the photon 
rate equation prediction, and the dotted 
line to the semiclassical prediction. The 
solid line is t = n L l c .  

The system parameters were chosen appropriate for Rhodamine 6G 
in ethylene glycol as the active medium in the distributed feedback 
laser, i.e., N = 3.5X10-3 M (2.1X101e mol/cm2), V, = bL/Nua, b = 
0.025 cm, 0, = 2.7X1 0-"km2, 0 = u,/2, ue = 1.4X1 0-I6cm', T = 1 I-/,, 
= 4 ns, V = 1 .O, n = 1.44. 

Due to the nonlinear coupling between the gain, the Bragg 
reflectivity, and the field, a self cavity-dumping is observed for a range 
of pump energies in the DFL. The inversion builds up as the integral of 
the pump pulse until the field increases sufficiently for gain saturation 
to become dominant. At this time, the Bragg reflectivity decreases 
rapidly allowing the field to escape as a pulse. If this process occurs 
during the pump pulse, the inversion has the opportunity to recover 
and produce a second pulse. As the pump energy is increased, the 
initial dumping will occur at earlier times allowing additional pulses to 
be produced. In Fig. 18.22, the total intensity I = R2 + S' and population 
inversion W are shown for a sequence of increasing pump energies. 
The solutions are plotted as functions of space and time. The laser 
output is directly proportional to the value of the total intensity at the 
end face ( z  = 0,L) of the pumped region. The behavior of these 
solutions at the end faces is in very close qualitative agreement with 
the photon rate equation model.' 

Using the previously published predictions6 of the photon rate 
equations for the duration of the in~tial output pulse as a function of the 
length of the pumped region given that either (a) the second pulse is 
at threshold or (b) the third pulse is at threshold, the new theory can 
be quantitatively evaluated as to its performance in the limit of long 
pump pulses, T,>>nL/c. This comparison is shown in Fig. 18.23 for a 
purnp pulse of 3.5 ns. The results show excellent agreement between 
the two theories in this limit. It is interesting to note that, although there 
is an offset, the slope ot the dependence is very close to that of the 
line t = nL/c .  

LENGTH OF THE DFL LENGTH OF THE DFL 

It has been shown previously that as the pump pulse width is 
reduced, the pulse duration of the DFL will also shorten.' However. as 
the pump pulse duration becomes comparable to the pumped-region 
transit time (T, = nL /c )  the photon rate equation analysis will be 
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invalid. In Fig. 18.24, the predicted pulse width versus pumped-region 
length [similar to Fig. 18.23(a)] in the case of a 70-ps pump pulse is 
shown for the two theories. Again, the line t=nL/c is shown. A large 
discrepancy between the theories is evident which, as expected, 
decreases as the length of the pumped region is decreased. It is seen 
that the pulse widths are much longer than predicted by the photon 
rate equations and that their duration approaches the transit time 
nL/c .  

Fig. 18.24 
Duration of the first pulse as a function of 
the length of the DFL for a 70-ps pump 
pulse and the second pulse at threshold. 
The dashed line is that predicted by the 
photon rate equation model, and the dotted 
line is that predicted by the semiclassical 
theory. The solid 11ne 1s t = nL l c .  

In the steady-state limit, s = R = 0, the field equations (12) reduce 
directly to the form of previous steady-state theories3.' in the gain- 
coupled case. The amount of Bragg reflectivity at any point is 
proportional to the coefficient of the coupling term in the field 
equations. The value of this coupling coefficient determines the nature 
of the field distribution. For a gain-coupled laser, the coupling 
coefficient can be expressed as aVWL12. It has been shown in the 
steady-state analyses that i f  aVWLI2 < 1.5, termed undercoupled, the 
field distribution will be peaked toward the ends of the pumped region, 
while if aVWL12 > 1.5, termed overcoupled, the distribution will be 
peaked in the center of the cavity. In the case of steady-state pumping 
shown in Fig. 18.25, after the initial oscillations damp out, the coupling 
coefficient can be calculated for different positions in the pumped 
region. The coupling coefficient varies from 0.42 at the edge of the 
region (z = 0,L) to 1.3 in the center (z = L l 2 )  where it is at a maximum. 
'This evaluation agrees with the form of the intensity distribution seen 
in Fig. 18.25(c), which shows behavior typical of undercoupling. 

We have found that due to gain saturation in a laser of t h ~ s  type, the 
high values of aVWL required for overcoupled operation cannot be 
maintained in the steady state. However, during the transient field 
build-up, prior to gain saturation, the coupling coefficient can reach 
values in the overcoupled range. This results from the gain over- 
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0 L l 2  L 

POSITION IN THE DFL (2) 

Fig. 18.25 
The intensity I and inversion density W as funct~ons of space and time for steady-state pumping 
(a, b) and the final intensity distribution along the length of the DFL (c). The length of the DFL was 
0 3 cm. 

shooting the steady-state value prior to the field build-up. As the field 
builds up, it experiences strong coupling and, therefore, peaks in the 
center of the cavity. Then, as the transient field depletes the gain, the 
laser shifts to the undercoupled regime enabl~ng the pulse to escape. 
In Fig. 18.26, 3-D plots of two cases are shown. For each case the plot 
is viewed both from earlrer times [Figs. 18.26(a) and 18.26(c)] , and 
from later times [Figs.18.26(b) and 18.26(d)] to allow examination of 
the intensity distribution as it evolves. In Fig. 18.26(a), the contours of 
equal time can be seen to have positive curvature indicating an 
overcoupled intensity distribution, while at later times [Fig. 18.26(b)], 
the contours show the negative curvature typical of undercoupled 
operation. Figures 18.26(c) and 18.26(d) are the same views of the 
field when the pumped region is made shorter. In this case the 
operation is undercoupled ((xVWL12 < 1.5) even during the buildup, as 
seen by negative curvatures at all times. 
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Fig. 18.26 
The intensity as functions of space and time for the case of the DFL of length 0.3 cm (a, b) and 0.03 
c m  (c, d). In both cases the pump intensity was adjusted so that the second pulse was at threshold. 
For each case the intensity distribution is shown as seen from earlier times (a, c) or from later times 

(b, dl .  

Conclusion 
Due to the inability of the photon rate equation analys~s of the DFL 

to predict the output characteristics accurately in the regime where 
the pumped-region transit time is comparable to the pump pulse 
length, a semiclassical treatment has been developed which takes 
into account the spatial variation of the field and inversion along the 
pumped region. The addition of this consideratron provides a theory 
capable of handling both the short-time transient regime and the 


